Preview

Izvestia Sankt-Peterburgskoj lesotehniceskoj akademii

Advanced search

Predicting growth by average height of pine plantations using a generalized algebraic difference approach

https://doi.org/10.21266/2079-4304.2022.238.49-66

Abstract

The relationship between the height and age of the stand is the basis for assessing the productivity of the growing area. Among the numerous methods for constructing site index scales, the generalized algebraic difference approach has become increasingly widespread in recent years due to the ability to vary several parameters of the basic growth function and thereby obtain polymorphic curves that are invariant with respect to the base age, specific for each level of stand productivity. The aim of the study is to model the growth of pine forest plantations along the average height using various equations (anomorphic and polymorphic curves, with constant or variable asymptotes) using a generalized algebraic difference approach and the development of a dynamic site index scale. The study uses data from measurements of stands on 89 permanent sample plots in pine forest cultures of the Forest Experimental Station of the RSAU-MTAA (Moscow). The study analyzed 25 equations obtained using the generalized algebraic difference approach. The general asymptotic polymorphic equation for the basic Richards (Mitscherlich) function with the replacement of the parameter responsible for the shape of the curve was adopted as the best model. Since all the studied forest stands are in similar soil and climatic conditions, a general asymptote appears regardless of the initial growth parameters. After removing the age trend, cyclical fluctuations were revealed in the residuals, which indicates the presence of wavelike periods of growth. The model is suitable for use in the age range from 10 to 150 years. In all cases, the modeled growth curves at average height reflect the dynamics of the actual stands.

About the Author

A. V. Lebedev
Forestry and Land Management at the Russian State Agrarian University – Moscow Timiryazev Agricultural Academy
Russian Federation

LEBEDEV Aleksandr V. – PhD (Agriculture), Associate Professor of the department of Agricultural Reclamation

127550. Timiryazevskaya str. 49. Moscow



References

1. Allen II M.G., Antón-Fernández C., Astrup R. A stand-level growth and yield model for thinned and unthinned managed Norway spruce forests in Norway. Scandinavian Journal of Forest Research, 2020, no. 35(5-6), pp. 238–251. DOI: 10.1080/02827581.2020.1773525.

2. Bailey R.L., Clutter J.L. Base-age invariant polymorphic site curves. Forest Science, 1974, no. 20, pp. 155–159.

3. Carmean W.H. Site classification for northern forest species. Gen. Tech. Rep. NE-29. Upper Darby. PA: U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station, 1977, pp. 205–239.

4. Cieszewski C.J. Developing a well-behaved dynamic site equation using a modified Hossfeld IV function Y3 = (axm) / (c + xm–1), a simplified mixed model and scant subalpine fir data. For Sci., 2003, no. 49, pp. 539–554.

5. Cieszewski C.J., Bailey R.L. Generalized algebraic difference approach: theory based derivation of dynamic site equations with polymorphism and variable asymptotes. Forest Science, 2000, no. 46, pp. 116–126.

6. Cieszewski C.J., Bella I.E. Polymorphic height growth and site index curves for Lodgepole Pine in Alberta. Canadian Journal of Forest Research, 1989, no. 19, pp. 1151–1160.

7. Cieszewski C.J., Strub M., Zasada M. New dynamic site equation that fits best the Schwappach data for Scots pine (Pinus sylvestris L.) in Central Europe. For Ecol Manag, 2007, no. 243, pp. 83–93. DOI: 10.1016/j.foreco.2007.02.025.

8. Demakov Yu.P. Diagnostics of sustainability of forest ecosystems (methodological and methodical aspects). Yoshkar-Ola, 2000. 416 p. (In Russ.)

9. Dubenok N.N., Kuzmichev V.V., Lebedev A.V. Forest area dynamics of the Forest experimental district of Russian Timiryazev State Agrarian University over a period of 150 years. Izvestiya of Timiryazev Agricultural Academy, 2018, no. 4, pp. 5–19. DOI: 10.26897/0021-342X-2018-4-5-19. (In Russ.)

10. Dubenok N.N., Kuzmichev V.V., Lebedev A.V. Growth and Productivity of Pine and Larch Stands under Conditions of Urban Environment. Vestnik of Volga State University of Technology. Ser.: Forest. Ecology. Nature Management, 2018, no 1(37), pp. 54–71. DOI: 10.15350/2306-2827.2018.1.54. (In Russ.)

11. Ercanli Í., Kahriman A., Yavuz H. Dynamic base-age invariant site index models based on generalized algebraic difference approach for mixed Scots pine (Pinus sylvestris L.) and Oriental beech (Fagus orientalis Lipsky) stands. Turk J. Agric. For., 2014, no. 38, pp. 134–147. DOI: 10.3906/tar-1212-67.

12. Hernández-Cuevas M., Santiago-García W., De los Santos-Posadas H.M., Martínez-Antúnez P., Ruiz-Aquino F. Models of dominant height growth and site indexes for Pinus ayacahuite Ehren. Agrociencia, 2018, no. 52, pp. 437–453.

13. Hevia A., Vilčko F., Álvarez-González J.G. Dynamic stand growth model for Norway spruce forests based on long-term experiments in Germany. Recursos Rurais, 2013, no. 9, pp. 45–54.

14. Hossfeld J.W. Mathematik für Forstmänner. Gotha: Ökonomen und Cameralisten, 1822. 310 p.

15. Jarosz K., Klapec B. Modelowanie wzrostu wysokosci przy pomocy funkcji Gompertza. Sylwan, 2002, no. 4, pp. 35–42.

16. Khlyustov V.K., Lebedev A.V. Commodity-monetary potential of stands and optimization of forest management. Irkutsk: Megaprint, 2017. 328 p. (In Russ.)

17. Korsuň F. Život normálního porostu ve vzorcích. Lesnická práce, 1935, no. 14, pp. 289–300.

18. Kuzmichev V.V. Forest Stands Dynamics Regularities: Principles and Models. Novosibirsk: Nauka Publ., 2013, 208 p. (In Russ.)

19. Kuzmichev V.V. Thinning and growth of forest plantations. RSAU-MTAA Publ., 2015. 236 p. (In Russ.)

20. Kuzmichev V.V., Russkov V.G. Analysis of tree hight growth curve deviation of Scots pine in Minusinsk pine woods. Polythematic network electronic scientific journal of the Kuban State Agrarian University, 2012, no. 76, pp. 277–288. (In Russ.)

21. Lundqvist B. On the height growth in cultivated stands of pine and spruce in Northern Sweden. Medd Fran Statens Skogforsk, 1957, no. 47, pp. 1–64.

22. Mazurkin P.M., Tishin D.V. Wave dynamics of tree-ring width of oak. Bulletin of the Samara Scientific Center of the Russian Academy of Sciences, 2014, no. 16(5), pp. 214–224. (In Russ.)

23. Merzlenko M.D. Coniferous Forest crops wave growth theory grounding. Forestry bulletin, 2021, no. 25(2). pp. 5–9. DOI 10.18698/2542-1468-2021-2-5-9. (In Russ.)

24. Nunes L., Patrício M., Tomé J., Tomé M. Modeling dominant height growth of maritime pine in Portugal using GADA methodology with parameters depending on soil and climate variables. Annals of Forest Science, 2011, no. 68, pp. 311–323. DOI 10.1007/s13595-011-0036-8.

25. Oettelt K.C. Practischer Beweis, daß die Mathesis bey dem Forstwesen unentbehrliche Dienste thue. Arnstadt: Joh. Andreas Schill, 1764. 174 р.

26. Panik M.J. Growth Curve Modeling: Theory and Applications. John Wiley & Sons Limited, 2013. 454 p. DOI: 10.1002/9781118763971.

27. Richards F.J. A flexible growth function for empirical use. J Exp Bot., 1959, no. 10, pp. 290–300.

28. Rojo-Alboreca A., Cabanillas-Saldaña A.M., Barrio-Anta M., Notivol-Paíno E., Gorgoso-Varela J.J. Site index curves for natural Aleppo pine forests in the central Ebro valley (Spain). Primavera, 2017, vol. 23, no. 1, pp. 143–159. DOI: 10.21829/myb.2017.231495.

29. Russkov V.G. Peculiarities of Scotch pine elongation in Eastern Siberia. Proceedings of higher educational institutions. Forest Journal, 2008, no. 3, pp. 34–39. (In Russ.)

30. Schumacher F.X. A new growth curve and its application to timber yield studies. J For., 1939, no. 37, pp. 819–820.

31. Seki M., Sakici O.E. Dominant height growth and dynamic site index models for Crimean pine in the Kastamonu–Tasköprü region of Turkey. Can. J. For. Res., 2017, no. 47, pp. 1441–1449. DOI: 10.1139/cjfr-2017-0131.

32. Socha J., Ochał W. Dynamic site index model and trends in changes of site productivity for Alnus glutinosa (L.) Gaertn. in southern Poland. Dendrobiology, 2017, vol. 77, pp. 45–57. DOI: 10.12657/denbio.077.004.

33. Stankova T.V. A dynamic whole-stand growth model, derived from allometric relationships. Silva Fennica, 2016, vol. 50, no. 1. article id 1406. DOI: 10.14214/sf.1406.

34. Tarmu T., Laarmann D., Kiviste A. Mean height or dominant height – what to prefer for modelling the site index of Estonian forests? Forestry Studies, 2020, vol. 72, is. 1, pp. 121–138. DOI: 10.2478/fsmu-2020-0010.

35. Tomé N.P. Modeling dominant height growth of maritime pine in Portugal using GADA methodology with parameters depending on soil and climate variables. Annals of Forest Science, Springer Nature (since 2011) / EDP Science (until 2010), 2011, no. 68 (2), pp. 311–323. DOI: 10.1007/s13595-011-0036-8.

36. Yang R.C., Kozak A., Smith J.H.G. The potential of Weibull-type functions as flexible growth curves. Canadian Journal of Forest Research, 1978, no. 8 (4), pp. 424–431.


Review

For citations:


Lebedev A.V. Predicting growth by average height of pine plantations using a generalized algebraic difference approach. Izvestia Sankt-Peterburgskoj lesotehniceskoj akademii. 2022;(238):49-66. (In Russ.) https://doi.org/10.21266/2079-4304.2022.238.49-66

Views: 112


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-4304 (Print)
ISSN 2658-5871 (Online)