Comparison of the growth rate of norway spruce seed and autogenerative progenies
https://doi.org/10.21266/2079-4304.2022.239.37-54
Abstract
The aim of the study is to reduce the timing of timber growth in forest plantations based on the use of multistage selection for seed and vegetative propagation. In test cultures of Norway spruce, the age dynamics of tree growth (up to plantation age of 28 years) is estimated according to the following planting variants: interspecific hybrid (Picea abies x Picea sibirica) spruce seedlings, autogenerative mixed progeny of fast-growing 4-year-old seedlings, polyclonal mixture (autogenerative mixed progeny of the fastest growing nurslings of 5– 10 years old with selection intensity 18–20%), sibling and semi-sibling families. According to the research results, sibs progenies of plus trees are characterized by the highest growth rate in the experiment. Sibs are recommended for use in works on selective forest improvement to obtain seedlings of exceptionally fast growth and strictly controlled origin. A lower growth rate as compared to sibs progenies of plus trees is characteristic of semi-sibs progenies, polyclonal mixture and interspecific hybrid progenies (Picea abies x Picea sibirica). For silvicultural purposes, it is primarily recommended to use semi-sib progenies of plus trees. Making clonal mixtures and interspecific hybridization are characterized by comparable growth rate with semi-sibs, but a significantly higher level of costs. The lowest growth rate is characteristic of cuttings, so for the purpose of obtaining high growth rate, the use of this method of reproduction of valuable genotypes is inexpedient. During the age period from 4 to 28 years, semi-sib and sib families of plus trees show a pronounced stability of rank position. Application of multistage selection in growing stands (selection of the best stands and plus trees, selection of the best semi-sib families or the best crosses of plus trees for sib families, selection of the best mixtures of sib and semi-sib families) allows to achieve the maximum effect in increasing the growth rate of artificial stands of Norway spruce.
Keywords
About the Authors
A. S. BondarenkoRussian Federation
BONDARENKO Aleksandr S. – PhD (Agroculture)
194021. Institutsky av. 21. St. Petersburg
A. V. Zhigunov
Russian Federation
ZHIGUNOV Anatolii V. – DSc (Agroculture), Professor
194021. Institutsky per. 5. St. Petersburg
J. E. Mozjerin
Russian Federation
MOZJERIN Jaroslav E. – bachelor
194021. Institutsky per. 5. St. Petersburg
References
1. Barnishkis J. Osobennosti rosta avtovegetativnogo potomstva eli [Features of the growth autovegetative of picea progenies]. Ohrana i racional'noe ispol'zovanie genofonda drevesnyh porod i nedrevesnoj rastitel'nosti lesa [Protection and rational using of the forest species gene fund and non-woody vegetation of the forest]. Seminar proc., LitNIILH, 17–18 Jun 1985. Kaunas: LitNIILH, 1985, vol. 1, pp. 24–28. (In Russ.)
2. Butenko O.J. Shabunin D.A., Zhigunov A.V. Sravnenie skorosti rosta kul'tur sosny i eli, sozdannyh sejancami i mikroregenerantami in vitro [Comparison of the growth rate of pinus and picea plantations created by seedlings and in vitro microregenerants]. Innovacii i tehnologii v lesnom hozjajstve ITF-2016 [Innovations and technologies in forestry ITF-2016]. tez. dokl. V Mezhdunar. nauch.-prakt. konf. [Proc. theses 31 May – 2 Jun 2016, St. Petersburg. SPbNIILH. 2016, p. 40. (In Russ.)
3. Dolgolikov V.I., Osminina R.F. Ispytanie potomstva sosny i eli na Severo-Zapade RSFSR [Pine and picea offspring testing in the North-West RSFSR]. L.: LenNIILH, 1984. 44 p. (In Russ.)
4. Dolgolikov V.I., Popivshhij I.I. Polozhitel'nye storony i nedostatki klonovoj selekcii eli. [Positive aspects and disadvantages of clone breeding of picea]. Lesovedenie, 1992, no. 2, pp. 11–18. (In Russ.)
5. Gemmel P., Örlander G., Högberg K.A. Norway spruce cuttings perform better than seedlings of the same genetic origin. Silvae Genetica, 1991, vol. 40, no. 5–6, pp. 198–202.
6. Högberg K.A. Possibilities and limitations of vegetative propagation in breeding and mass propagation of Norway spruce: Doctoral thesis. Uppsala, 2003. 39 p.
7. Isik K.J., Kleinschmit W. Steiner Age–age correlations and early selection for height in a clonal genetic test of Norway spruce. Forest science, 2010, vol. 56, no. 2, pp. 212–221.
8. Karlsson B. Clone testing and genotype x environment interaction in Picea abies: Doctoral thesis. Uppsala, 2000. 47 p.
9. Karlsson B., Hogberg K.A. Genotypic parameters and clone x site interaction in clone tests of Norway spruce (Picea abies (L.) Karst.). Forest genetics, 1998, vol. 5, no. 1, pp. 21–30.
10. Kleinschmit J., Schmidt J. Experiences with Picea abies cuttings propagation in Germany and problems connected with large scale application. Silvae Genetica, 1977, vol. 26, no. 5–6, pp. 197–203.
11. Levkoev E. et al. Differences in growth and wood density in clones and provenance hybrid clones of Norway spruce. Canadian journal of forest research, 2017, vol. 47, no. 3, pp. 389–399.
12. Lindgren D., Karlsson B., Andersson B., Prescher F. Swedish seed orchards for Scots pine and Norway spruce: Seed orchard. Proceeding from a conference at Umea, Sweden, 26–28 September 2007. Umea, 2008, pp. 142–154.
13. Lundkvist K., Eriksson G., Norell L. Performance of clonal mixtures and singleclone plots in young Picea abies trials. Scandinavian journal of forest research, 1992, vol. 7, no. 1–4, pp. 53–62.
14. Raiskila S. et al. Growth rate and wood properties of Norway spruce cutting clones on different sites. Silva Fennica, 2006, vol. 40, no. 2, pp. 247–256.
15. Roulund H., Wellendorf H., Werner M. A selection experiment for height growth with cuttings of Picea abies (L.) Karst. Scandinavian journal of forest research, 1986, vol. 1, no. 1–4, pp. 293–302.
16. Routa J. at al. The timber and energy biomass potential of intensively managed cloned N on way picea abies stands. Bioenergy, 2013, vol. 5, no. 1, pp. 43–52.
17. Uvarova N I., Filippova L.N. Tehnologija vegetativnogo razmnozhenija eli dlja sozdanija plantacij [Technology of vegetative reproduction of picea abies for the creation of plantations]. Guidelines. L.: LenNIILH, 1987. 20 p. (In Russ.)
18. Zhigunov A.V., Bondarenko A.S. Ocenka skorosti rosta semennogo i avtovegetativnogo potomstva eli evropejskoj razlichnyh selekcionnyh kategorij [Assessment of the growth rate of seed and autovegetative picea abies progenies of various forest tree breeding categories]. Nauchno-tehnicheskij progress v otrasljah lesnogo kompleksa: sb. statej sotrudnikov lesohozjajstvennogo fakul'teta SPbGLTA po itogam zakonchennyh nauchno-issledovatel'skih rabot [Scientific and technical progress in the forest complex branches. Proc. SPbGLTA forestry faculty of based on the completed research works results]. Saint-Petersburg: SPbGLTA, 2004, pp. 12–31. (In Russ.)
19. Zhigunov A.V., Shabunin D.A., Salmova M.A., Shestibratov K.A. Adaptacija regenerantov eli evropejskoj k uslovijam ex vitro [Adaptation of picea abies regenerants to ex vitro conditions]. Trudy Sankt-Peterburgskogo NII lesnogo hozjajstva [Saint-Petersburg forestry research institute proceedings], 2010, vol. 1(21), pp. 120–135. (In Russ.)
20. Zhigunov A.V., Shestibratov K.A., Churochkina O.A., Shabunin D.A. Ukorenenie mikropobegov eli evropejskoj v uslovijah in vitro i ex vitro [Rooting of picea abies in vitro and ex vitro micro-shoots]. Trudy Sankt-Peterburgskogo NII lesnogo hozjajstva [Saint-Petersburg forestry research institute proceedings], 2009, vol. 3(20), pp. 152–170. (In Russ.)
Review
For citations:
Bondarenko A.S., Zhigunov A.V., Mozjerin J.E. Comparison of the growth rate of norway spruce seed and autogenerative progenies. Izvestia Sankt-Peterburgskoj lesotehniceskoj akademii. 2022;(239):37-54. (In Russ.) https://doi.org/10.21266/2079-4304.2022.239.37-54