Preview

Izvestia Sankt-Peterburgskoj lesotehniceskoj akademii

Advanced search

Application of fractal theory to the study of adhesive bonding

https://doi.org/10.21266/2079-4304.2022.240.197-210

Abstract

Fractals are found in the structure of solids, self-similarity is also characteristic of the structure of wood. The property of individual parts to be similar to the entire structure as a whole is called fractal. Based on the application of the principles of fractal geometry, the equations of topochemical kinetics are modified. This approach makes it possible to generalize the existing equations and obtain more accurate values of the kinetic parameters. Being a quantitative integral characteristic of the microstructure of an object, the fractal dimension makes it possible to find its surface area or volume with a given level of approximation. At the same time, the relationship between the surface area of solid-phase reagents and their fractal dimension makes it possible to use it in a formal kinetic analysis. To describe the kinetics of processes involving reaction centers, the «reaction fractal dimension» can be used, i.e. the dimension of the set of reaction centers. The introduction of fractal dimension into the equations of topochemical kinetics makes it possible to quantitatively take into account the influence of the state of the surface, as well as, in the future, the change in its morphology with time. Understanding the principles of constructing fractal systems, it is possible to determine the structure and topography of the surface of porous bodies, in particular, the glue joint of wood (plywood), which was the goal of this work. Based on the measurements carried out, we came to the conclusion about the heterogeneity of the structure of wood, in the framework of the theory of fractals. The main factor indicating the heterogeneity of the wood structure is the consolidation processes in one form or another, present in the plywood production technology. It is assumed that the composite wood material, in particular plywood, has a dispersion base, i.e. the skeleton of the material is formed by dispersed particles (a wood substance partially filled with glue) and interparticle pores. The idealization of wood-polymer material is carried out, since by their nature such materials are consolidated dispersed media, in their manufacture it is necessary to take into account random deviations and random interactions of technological factors. To build the structure of a wood-polymer material (plywood), a method for determining the fractal dimension is used, based on measuring the laws of density distribution in composites. The fractal dimension can be used as a universal constant characterizing the structure of the composite. The values of the fractal dimension obtained by us for plywood based on modified adhesives indicate that the so-called superposition (overlay) of both types of components (resin and modifier) takes place during manufacture. Note that the fractal dimension is sensitive to changes in technological regimes, so when the nature and nature of the modifier change, the fractal dimension changes, as well as, in our opinion, the physical and mechanical parameters of plywood.

About the Authors

D. S. Rusakov
St.Petersburg State Forestry University
Russian Federation

RUSAKOV Dmitry S. – PhD (Technical), Associate Professor of the Department of Materials Technology, designs and constructions of wood

194021. Institutskii per. 5. St. Petersburg



A. N. Chubinsky
St.Petersburg State Forestry University
Russian Federation

CHUBINSKY Anatoly N. – DSc (Technical), Professor, Head of the Department of materials technology, designs and constructions of wood

194021. Institutskii per. 5. St. Petersburg



G. S. Varankina
Санкт-Петербургский государственный лесотехнический университет
Russian Federation

VARANKINA Galina S. – DSc (Technical), Professor of the Department of Materials Technology, designs and constructions of wood

194021. Institutskii per. 5. St. Petersburg



References

1. Antipov O.I., Neganov V.A., Potapov A.A. Determinirovannyj haos i fraktaly v diskretno-nelinejnyh sistemah [Deterministic chaos and fractals in discrete-nonlinear systems]. Pod red. i s predisloviem akad. Yu.V. Gulyaeva i chl.-korr. RAN S.A. Nikitova. M.: Radiotekhnika, 2009. 235 р. (In Russ.)

2. Balhanov V.K. Osnovy fraktal'noj geometrii i fraktal'nogo ischisleniya [Fundamentals of fractal geometry and fractal calculus]. Ulan-Ude: Izd-vo Buryatskogo gosuniversiteta, 2013. 224 р. (In Russ.)

3. Bozhokin S.V., Parshin D.A. Fraktaly i mul'tifraktaly [Fractals and multifractals]. Izhevsk: NIC «Regulyarnaya i haoticheskaya dinamika», 2001. 128 р. (In Russ.)

4. Varankina G.S., Chubinskii A.N. Formirovanie nizkotoksichnyh kleenyh drevesnyh materialov [Formation of low-toxic glued wood materials]; monografiya. SPb.: Himizdat, 2014. 148 р. (In Russ.)

5. Vishik M.I. Fraktal'naya razmernost' mnozhestv [Fractal dimension of sets]. Sorosovskij obrazovatel'nyj zhurnal, 1998, no. 1, pp. 122–127. (In Russ.)

6. Gavrilova N.N., Nazarov V.V. Analiz poristoj struktury na osnove adsorbcionnyh dannyh [Analysis of the porous structure based on adsorption data]. M.: RHTU im. D.I. Mendeleeva, 2015. 132 p. (In Russ.)

7. Gelashvili D.B., Iudin D.I., Rozenberg G.S., YAkimov V.N., Solncev L.A. Fraktaly i mul'tifraktaly v bioekologii [Fractals and multifractals in bioecology: Monograph]: monografiya. Nizhnij Novgorod: Izd-vo Nizhegorodskogo gosuniversiteta, 2013. 370 p. (In Russ.)

8. Gijon E., Mitesku K.D., YUlen ZH.-P., Ru S. Fraktaly i perkolyaciya v poristoj srede [Fractals and percolation in a porous medium]. UFN, 1991, vol. 161, no. 10, pp. 121–128. (In Russ.)

9. Kulak M.I. Strukturnye aspekty fraktal'noj mekhaniki drevesno-polimernyh kompozitov [Structural aspects of fractal mechanics of wood-polymer composites]. Vestnik AN BSSR. Seriya fiziko-tekhnicheskih nauk, 1991, no. 2, pp. 18–22. (In Russ.)

10. Mandel'brot B. Fraktal'naya geometriya prirody [Fractal geometry of nature]. – M.: Izd-vo Institut komp'yuternyh issledovanij, 2002. 656 p. (In Russ.)

11. Rusakov D.S., Chubinskii A.N., Varankina G.S. Sovershenstvovanie tekhnologii skleivaniya drevesnyh materialov modificirovannymi kleyami [Improvement of the technology of gluing wood materials with modified adhesives]. SPb.: SPbGLTU, 2019. 127 p. (In Russ.)

12. Rusakov D.S., Varankina G.S., Chubinskii A.N., Stepanishcheva M.V. Vliyanie stroeniya i struktury drevesiny razlichnyh porod na raskhod kleya pri proizvodstve fanery [Influence of the structure and structure of wood of various species on the consumption of glue in the production of plywood]. Nauchnyj periodicheskij zhurnal Bratskogo gosudarstvennogo universiteta. Sistemy. Metody. Tekhnologii. 2019, no. (44), pp. 112–117. (In Russ.)

13. Ugolev B.N. Drevesinovedenie i lesnoe tovarovedenie [Wood science and forest commodity science]. M.MGUL, 2007. 351 p. (In Russ.)

14. Fedyaev A.A., Chubinskij A.N. Issledovanie prochnosti skleivaniya hvojnyh pilomaterialov [Study of the bonding strength of softwood lumber]. Izvestiya Sankt-Peterburgskoj lesotekhnicheskoj akademii, 2018, 2018, iss. 225, pp. 202–212. (In Russ.)

15. Chubinskii A.N.,Gerasyuta S.M., Kovalenko I.V. Poristost' drevesiny s uchetom eyo fraktal'noj struktury.Stroenie, svojstva i kachestvo drevesiny [The porosity of wood, taking into account its fractal structure].Trudy IV Mezhdunar. Simp.. SPb.: SPbGLTA, 2004, pp. 384–386. (In Russ.)

16. Chubinskii A. N. Formirovanie kleevyh soedinenij drevesiny [Formation of adhesive joints of wood]. SPb., 1992. 162 p. (In Russ.)

17. Ravikovitch P.I., Neimark A.V. Calculations of pore size distributions in nanoporous materials from adsorption and desorption isotherms. Stud. Surf. Sci. Catal, 2000, vol. 129, pp. 597–606. (In Eng.)

18. Rouquerol J., Avnir D., Fairbridge C.W., Everett D.H., Haynes J.H., Pernicone N., Ramsay J.D. F., Sing K.S. W., Unger K.K. Recommendations for the characterization of porous solids (Technical Report). Pure Appl. Chem, 1994, vol. 66, no. 8, pp. 1739–1758. (In Eng.)

19. Rouquerol J., Llewellyn P., Rouquerol F. Is the BET equation applicable to microporous adsor-bents? Stud. Surf. Sci. Catal, 2007, vol. 160, pp. 49–56. (In Eng.)

20. Selbo, M.L. Adhesive bonding of wood. U.S. Dep. Agr., Tech. Bull., 1975, no. 1512. 124 p. (In Eng.)

21. Sing K.S.W., Everett D.H., Haul R.A.W., Moscou L., Pierotti R.A., Rouquerol J., Siemieniewska T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem., 1985, vol. 57, no. 4, pp. 603–619. (In Eng.)

22. Stoeckli H.F., Kraehenbuehl F. The external surface of microporous carbons, derived from ad-sorption and immersion studies. Carbon, 1984, vol. 22, no. 3, pp. 297–299. (In Eng.)

23. Ugolev B.N. Wood as a natural smart material. Wood Science and Technology. Journal of the International Academy of Wood Science, 2014, vol. 48, no. 3, pp. 553–568. DOI 10.1007/s00226-013-0611-2. (In Eng.)

24. Ustinov E.A., Fenelonov V.B., Yakovlev V.A., Eletskii P.I. Characterization of the porous structure of carbon materials by means of density functional theory. Kinet. Catal., 2007, vol. 48, no. 4, pp. 589–598. (In Eng.)

25. Walton K.S., Snurr R.Q. Applicability of the BET method for determining surface areas of mi-croporous metal−organic frameworks. J. Am. Chem. Soc., 2007, vol. 129, no. 27, pp. 8552–8556. (In Eng.)


Review

For citations:


Rusakov D.S., Chubinsky A.N., Varankina G.S. Application of fractal theory to the study of adhesive bonding. Izvestia Sankt-Peterburgskoj lesotehniceskoj akademii. 2022;(240):197–210. (In Russ.) https://doi.org/10.21266/2079-4304.2022.240.197-210

Views: 95


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-4304 (Print)
ISSN 2658-5871 (Online)