Analysis of Molecular Genetic Mechanisms of Birch and Oak Resistance to Water and Nitrogen Deficiency
https://doi.org/10.21266/2079-4304.2022.241.120-141
Abstract
The article presents a review of the literature about molecular and genetic mechanisms of birch and oak resistance to water and nitrogen deficiency. Analysis of the transcriptome activity of genes that respond to abiotic stresses makes it possible to carry out targeted selection for the purpose of effective reforestation, as well as the creation of forest plantations. The molecular genetic response to drought has been more studied in woody plants than nitrogen deficiency. Compared to Betula sp., the early response of Quercus sp. to drought is less intense and is expressed in the suppression of metabolic activity and activation of growth maintenance systems after stress. With prolonged exposure to drought, intensive сell wall remodeling is observed, associated with the biosynthesis of cellulose and lignin. Active processes of neutralization of reactive oxygen species and biosynthesis of antioxidants are observed. During the early response of Betula sp. drought, a high level of expression of genes associated with a decrease in water loss is observed. Drought protection also includes control of stomatal closure and activation of genes associated with the response to osmotic stress. Among candidate genes for response to drought in oak species, transcription factors, heat shock proteins, transporter proteins, etc. were identified. Based on the results of an analytical review of the literature, a list of differentially expressed genes (DEGs) identified in birch and oak in response to drought was compiled. If the molecular genetic mechanisms of drought resistance in woody plants have been studied to a sufficient extent, many candidate genes involved in the stress response have been identified and can be further recommended for targeted breeding, then the issue of adaptation of woody plants to nitrogen deficiency is poorly studied and seems to be very relevant for further research.
Keywords
About the Authors
I. V. RomashkinaRussian Federation
ROMASHKINA Irina V. – PhD (Biology), Leading Researcher; research assistant
141202. Institutskaya str. 15. Pushkino. Moscow region
Web of Science ResearcherID: E-8696-2014
T. S. Tikhomirova
Russian Federation
TIKHOMIROVA Tatyana S. – research assistant
142290. Institutskaya str. 7. Pushchino. Moscow Region
Web of Science ResearchID: R-7871-2016
Scopus AuthorID: 57202858627
K. A. Shestibratov
Russian Federation
SHESTIBRATOV Konstantin A. – PhD (Bilology), Head of forest biotechnology group
142290. Science av. 6. Puschino. Moscow region
Web of Science ResearcherID: J-5288-2018
References
1. Koroleva T.S., Konstantinov A.V., Shun'kina E.A. Ugrozy i social'noekonomicheskie posledstviya izmeneniya klimata dlya lesnogo sektora. Trudy Sankt-Peterburgskogo nauchno-issledovatel'skogo instituta lesnogo hozyajstva, 2015, no. 3, pp. 55–71. (In Russ.)
2. Lukina N.V., Isaev A.S., Kryshen' A.M. i dr. Prioritetnye napravleniya razvitiya lesnoj nauki kak osnovy ustojchivogo upravleniya lesami. Lesovedenie, 2015, no. 4, pp. 243–254. (In Russ.)
3. Morkovina S.S. Torzhkov I.O. Ekonomicheskaya ocenka vozmozhnosti sozdaniya lesnyh plantacij na zemlyah lesnogo fonda. Social'no-ekonomicheskie yavleniya i process, 2016, vol. 11, no. 6, pp. 46–50. (In Russ.)
4. Neofitov Yu.A. Kratkaya hronologiya poteri lesistosti planet. Nauchnye trudy Cheboksarskogo filiala Glavnogo botanicheskogo sada im. N.V. Cicina RAN, 2018, no. 10, pp. 29–40. (In Russ.)
5. Shejkina O.V. Primenenie molekulyarnyh markerov v lesnom selekcionnom semenovodstve v Rossii: opyt i perspektivy (obzor). Vestnik Povolzhskogo gosudarstvennogo tekhnologicheskogo universiteta. Seriya: Les. Ekologiya. Prirodopol'zovanie, 2022, no. 2(54), pp. 64–79. (In Russ.)
6. Shtukin S.S. Lesnye plantacii v sovremennom mire. Lesnoe i ohotnich'e hozyajstvo, 2015, no. 3, pp. 2–6. (In Russ.)
7. Chen Z.-Q., Baison J., Pan B. et al. Accuracy of genomic selection for growth and wood quality traits in two control-pollinated progeny trials using exome capture as the genotyping platform in Norway spruce. BMC Genomics, 2018, no. 19, p. 946.
8. Cheng L. et al. A miR169c-NFYA10 module confers tolerance to low-nitrogen stress to Betula luminifera. Industrial Crops and Products, 2021, vol. 172, p. 113988.
9. De León I.P., Sanz A., Hamberg M., Castresana C. Involvement of the Arabidopsisα-DOX1 fatty acid dioxygenase in protection against oxidative stress and cell death. The Plant Journal, 2002, no. 29(1), pp. 61–72.
10. Ganie A.H., Ahmad A., Yousuf P.Y., Pandey R., Ahmad S., Aref I.M. et al. Nitrogen-regulated changes in total amino acid profile of maize genotypes having contrasting response to nitrogen deficit. Protoplasma, 2017, no. 254, pp. 2143–2153.
11. Gong S., Ding Y., Hu S., Ding L., Chen Z., Zhu C. The role of HD-Zip class I transcription factors in plant response to abiotic stresses. Physiologia Plantarum, 2019, no. 167(4), pp. 516–525.
12. Isik F., Bartholomé J., Farjat A. et al. Genomic selection in maritime pine. Plant Science, 2016, vol. 242, pp. 108–119.
13. Jia Y., Niu Y., Zhao H., Wang Z., Gao C., Wang C., Chen S., Wang Y. Hierarchical transcription factor and regulatory network for drought response in Betula platyphylla. Horticulture Research, 2022, no. 9, p. uhac040.
14. Krutovsky K.V. From population genetics to population genomics of forest trees: Integrated population genomics approach. Russian Journal of Genetics, 2006, vol. 42, no. 10, pp. 1088–1100.
15. Lu L., Zhang Y., Li L., Yi N., Liu Y., Qaseem M.F. et al. Physiological and Transcriptomic Responses to Nitrogen Deficiency in Neolamarckia cadamba. Front. Plant Sci., 2021, p. 2488.
16. Lenz P.R., Nadeau S., Mottet M.-J. et al. Multi-trait genomic selection for weevil resistance, growth, and wood quality in Norway spruce / Evolutionary Application. 2019, vol. 13, no 1, pp. 76–94.
17. Li D., Li Y., Qian J., Liu X., Xu H., Zhang G., Ren J., Wang L., Zhang L., Yu H. Comparative Transcriptome Analysis Revealed Candidate Genes Potentially Related to Desiccation Sensitivity of Recalcitrant Quercus variabilis Seeds. Frontiers in Plant Science, 2021, no. 12, p. 717563.
18. Ling L.-Z., Zhang S.-D. Comparative proteomic analysis between mature and germinating seeds in Paris polyphylla var. yunnanensis. PeerJ., 2022, no. 10, p. e13304.
19. Liu C., Chen S., Wang S. et al. A genome wide transcriptional study of Populus alba x P. tremula var. glandulosa in response to nitrogen deficiency stress. Physiol Mol Biol Plants, 2021, no. 27, pp. 1277–1293.
20. Ma P., Zhang X., Luo B. et al. Transcriptomic and genome-wide association study reveal long noncoding RNAs responding to nitrogen deficiency in maize. BMC Plant Biol, 2021, no. 21, p. 93.
21. Madritsch S., Wischnitzki E., Kotrade P., Ashoub A., Burg A., Fluch S., Brüggemann W., Sehr E.M. Elucidating Drought Stress Tolerance in European Oaks Through Cross-Species Transcriptomics. G3: Genes|Genomes|Genetics, 2019, no. 9(10), pp. 3181–3199.
22. Mamashita T., Larocque G.R., DesRochers A., Beaulieu J., Thomas B.R., Mosseler A. et al. Short-term growth and morphological responses to nitrogen availability and plant density in hybrid poplars and willows. Biomass Bioenergy, 2015, no. 81, pp. 88–97.
23. Martin T., Oswald O., Graham I.A. Arabidopsis seedling growth, storage lipid mobilization, and photosynthetic gene expression are regulated by carbon:nitrogen availability. Plant Physiol., 2002, no. 128, pp. 472–481.
24. Mevy J.-P., Loriod B., Liu X., Corre E., Torres M., Büttner M., Haguenauer A., Reiter I.M., Fernandez C., Gauquelin T. Response of Downy Oak (Quercus pubescens Willd.) to Climate Change: Transcriptome Assembly, Differential Gene Analysis and Targeted Metabolomics. Plants, 2020, no. 9(9), p. 1149.
25. Miller A.J., Xu G., Fan X. Plant nitrogen assimilation and use efficiency. Annu. Rev. Plant Biol., 2012, no. 63, pp. 153–182.
26. Pantelić A., Stevanović S., Komić S.M., Kilibarda N., Vidović M. In Silico Characterisation of the Late Embryogenesis Abundant (LEA) Protein Families and Their Role in Desiccation Tolerance in Ramonda serbica Panc. International Journal of Molecular Sciences, 2022, no. 23(7), p. 3547.
27. Qin Y., Li Q., An Q., Li D., Huang S., Zhao Y., Chen W., Zhou J., Liao H. A phenylalanine ammonia lyase from Fritillaria unibracteata promotes drought tolerance by regulating lignin biosynthesis and SA signaling pathway. International Journal of Biological Macromolecules, 2022, no. 213, p. 574–588.
28. Resende M.F., Munoz P., Acosta J.J. et al. Accelerating the domestication of trees using genomic selection: accuracy of prediction models across ages and environments. New Phytologist. 2012, vol. 193, no. 3, pp. 617–624.
29. Sadhukhan A., Prasad S.S., Mitra J., Siddiqui N., Sahoo L., Kobayashi Y., Koyama H. How do plants remember drought? Planta, 2022, no. 256(1), p. 7.
30. Scheible W.R., Morcuende R., Czechowski T., Fritz C., Osuna D., Palacios-Rojas N. et al. Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of arabidopsis in response to nitrogen. Plant Physiol., 2004, no. 136, pp. 2483–2499.
31. Shin S.Y. et al. Transcriptomic analyses of rice (Oryza sativa) genes and noncoding RNAs under nitrogen starvation using multiple omics technologies. BMC genomics, 2018, vol. 19, no. 1, pp. 1–20.
32. Singh A., Mehta S., Yadav S., Nagar G., Ghosh R., Roy A., Chakraborty A., Singh I.K. How to Cope with the Challenges of Environmental Stresses in the Era of Global Climate Change: An Update on ROS Stave off in Plants. International Journal of Molecular Sciences, 2022, no. 23(4), p. 1995.
33. Singh P., Arif Y., Miszczuk E., Bajguz A., Hayat S. Specific Roles of Lipoxygenases in Development and Responses to Stress in Plants. Plants, 2022, no. 11(7), p. 979.
34. Sun Y., Liu L., Sun S., Han W., Irfan M., Zhang X., Zhang L., Chen L. AnDHN, a Dehydrin Protein From Ammopiptanthus nanus, Mitigates the Negative Effects of Drought Stress in Plants. Frontiers in Plant Science, 2021, no. 12, p. 788938.
35. Taji T., Ohsumi C., Iuchi S., Seki M., Kasuga M., Kobayashi M., Yamaguchi-Shinozaki K., Shinozaki K. Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. The Plant Journal: For Cell and Molecular Biology, 2002, no. 29(4), pp. 417–426.
36. Tan Z., Wen X., Wang Y. Betula platyphylla BpHOX2 transcription factor binds to different cis-acting elements and confers osmotic tolerance. Journal of Integrative Plant Biology, 2020, no. 62(11), pp. 1762–1779.
37. Ukrainetz N.K., Mansfield S.D. Assessing the sensitivities of genomic selection for growth and wood quality traits in lodgepole pine using Bayesian models / Tree Genetics & Genomes. 2020, vol. 16, no. 1, p. 14.
38. Wang Y., Feng G., Zhang Z., Liu Y., Ma Y., Wang Y., Ma F., Zhou Y., Gross R., Xu H., Wang R., Xiao F., Liu Y., Niu X. Overexpression of Pti4, Pti5, and Pti6 in tomato promote plant defense and fruit ripening. Plant Science: An International Journal of Experimental Plant Biology, 2021, no. 302, p. 110702.
39. Wang C., Zhou Y., Yang X., Zhang B., Xu F., Wang Y., Song C., Yi M., Ma N., Zhou X., He J. The Heat Stress Transcription Factor LlHsfA4 Enhanced Basic Thermotolerance through Regulating ROS Metabolism in Lilies (Lilium Longiflorum). International Journal of Molecular Sciences, 2022, no. 23(1), p. 572.
40. Wen X., Wang J., Zhang D., Wang Y. A Gene Regulatory Network Controlled by BpERF2 and BpMYB102 in Birch under Drought Conditions. International Journal of Molecular Sciences, 2019, no. 20(12), p. 3071
41. Yang Z., Wang Z., Yang C., Yang Z., Li H., Wu Y., et al. Physiological responses and small rnas changes in maize under nitrogen deficiency and resupply. Genes Genomics, 2019, no. 41, pp. 1183–1194.
42. Zapata-Valenzuela J., Whetten R.W., Neale D. et al. Genomic estimated breeding values using genomic relationship matrices in a cloned population of loblolly pine / G3: Genes, Genomes, Genetics. 2013, vol. 3, no. 5, pp. 909–916.
43. Zhang J., Qian J.-Y., Bian Y.-H., Liu X., Wang C.-L. Transcriptome and Metabolite Conjoint Analysis Reveals the Seed Dormancy Release Process in Callery Pear. International Journal of Molecular Sciences, 2022, no. 23(4), p. 2186.
44. Zhao W.T., Feng S.J., Li H., Faust F., Kleine T., Li L.N., Yang Z.M. Salt stressinduced ferrochelatase 1 improves resistance to salt stress by limiting sodium accumulation in Arabidopsis thaliana. Scientific Reports, 2017, no. 7(1), p. 14737.
45. Zhao X. et al. Transcriptome analysis for Fraxinus mandshurica Rupr. seedlings from different carbon sequestration provenances in response to nitrogen deficiency. Forests, 2021, vol. 12, no. 2, p. 257.
46. Zhou H., Zhao J., Cai J., Patil S.B. Ubiquitin-specific proteases function in plant development and stress responses. Plant Molecular Biology, 2017, no. 94(6), pp. 565–576.
Review
For citations:
Romashkina I.V., Tikhomirova T.S., Shestibratov K.A. Analysis of Molecular Genetic Mechanisms of Birch and Oak Resistance to Water and Nitrogen Deficiency. Izvestia Sankt-Peterburgskoj lesotehniceskoj akademii. 2022;(241):120-141. (In Russ.) https://doi.org/10.21266/2079-4304.2022.241.120-141