Preview

Izvestia Sankt-Peterburgskoj lesotehniceskoj akademii

Advanced search

Seasonal changes in the pigment composition of needles of representatives of the genus spruce in the Nizhny Novgorod region

https://doi.org/10.21266/2079-4304.2021.235.22-39

Abstract

We studied the nature and scale of seasonal changes in the pigment composition of needles of different spruce species (Picea A. Dietr.) under the conditions of introduction to the Nizhny Novgorod region, and revealed the content and balance of photosynthetic plastid pigments. The objects of the study were 13 species of spruce belonging to aborigines and exotics: Norway spruce (Picea abies (L.) H. Karst.); Siberian spruce (Picea obovata Ledeb.); Glen spruce (Picea glehnii (F. Schmidt) Mast.); white spruce (Picea glauca (Moench) Voss); Dragon spruce (Picea asperata Masters); black spruce (Picea mariana Mill., Britton, Sterns & Poggenburg); silver prickly spruce (Picea pungens Engelm., f. argentea); blue prickly spruce (Picea pungens Engelm., f. glauca Regel); Serbian spruce (Picea omorika (Pančić) Purk.); Engelman spruce (Picea engelmannii Parry ex Engelm.); Blue spruce (Picea pungens engelm.); Ayan spruce (Picea jezoensis (Siebold & Zucc.) carrière); Korean spruce (Picea koraiensis Nakai). Sampling was carried out in a randomized manner, following the principle of a single logical difference. A spectrophotometer SF-2000 was used. It was found that the content and ratio of plastid pigments in conifers is dynamic throughout the year. The effectiveness of the influence of the phases of seasonal plant development on the characteristics of the pigment composition is determined: by the content of chlorophylla- 18.86±0.32%; by the content of chlorophyll-b-21.26±0.31%; by the sum of chlorophylls-16.13±0.33%; by carotenoids – 37.43±0.25%; by the proportion of chlorophyll-a – 39.74±0.24% and the proportion of chlorophyll-b – 39.74±0.24%. The effect of interspecific differences in the content and ratio of different forms of chlorophyll and carotenoids is significant and sufficiently equalized at a maximum of 23.56±0.91%. With General trends in seasonal dynamics, representatives of the spruce genus have a noticeable species-specific pigment composition.

About the Authors

A. V. Kulkova
Nizhny Novgorod State Agricultural Academy
Russian Federation

KULKOVA Anna V. – Senior Lecturer at the Department of Forest Plantations

603107. Gagarina av. 97. Nizhny Novgorod

ResearcherID (WoS): G-9517-2019



N. N. Besschetnova
Nizhny Novgorod State Agricultural Academy
Russian Federation

BESSHETNOVA Natalya N. – DSc (Agricultural), Dean of the Faculty of Forestry, Associate Professor

603107. Gagarina av. 97. Nizhny Novgorod

ResearcherID (WoS): H-1343-2019



V. P. Besschetnov
Nizhny Novgorod State Agricultural Academy
Russian Federation

BESSHETNOV Vladimir P. – DSc (Biology), Head of the Department of Forest Plantations, Professor

603107. Gagarina av. 97. Nizhny Novgorod

ResearcherID (WoS): S-5889-2016



References

1. Adams G.W., Kunze H.A. Clonal variation in cone and seed production in black and white spruce seed orchards and management implications. Forestry Chronicle, 1996, vol. 72, nu. 05, рр. 475–480. DOI: 10.5558/tfc72475-5.

2. Barbier S., Balandier P., Gosselin F. Influence of several tree traits on rainfall partitioningin temperate and boreal forests: a review. Annals of Forest Science, 2009, vol. 66, nu. 6, Article Number 602, pp. 602p1–602p11. DOI: http://dx.doi.org/10.1051/forest/2009041.

3. Besschetnova N.N. Scots pine (Pinus sylvestris L.). The effectiveness of the selection of plus trees. N. Novgorod: Nizhny Novgorod State Agricultural Academy, 2016. 382 p. (In Russ.)

4. Besschetnova N.N., Besschetnov V.P. Scots pine (Pinus sylvestris L.). Morphometry and physiology of the needles of plus trees. N. Novgorod: Nizhny Novgorod State Agricultural Academy, 2014. 368 p. (In Russ.)

5. Besschetnova N.N., Besschetnov V.P., Kul’kova A.V., Ornatsky A.N. Content and ratio of plastid pigments in conifers of native and introduced species of the genus spruce (Picea A. Dietr.) growing on the territory of the Nizhny Novgorod region. Certificate of state registration of the database No. 2021620046. Date of state registration in the Database Register 14.01.2021. (In Russ.)

6. Castagneri D., Petit G., Carrer M. Divergent climate response on hydraulicrelated xylem anatomical traits of Picea abies along a 900-m altitudinal gradient. Tree Physioljgy, 2015, vol. 35, is. 12, pp. 1378–1387. DOI: 10.1093/treephys/tpv085.

7. Dere S., Güneş T., Sivaci R. Spectrophotometric Determination of Chlorophyll - A, B and Total Carotenoid Contents of Some Algae Species Using Different Solvents. Turkish Journal of Botany, 1998, vol. 22, is. 1, рр. 13–18.

8. Gitelson A.A., Buschmann C., Lichtenthaler H.K. The Chlorophyll Fluorescence Ratio F735/F700 as an Accurate Measure of the Chlorophyll Content in Plants. Remote Sensing of Environment. An Interdisciplinary Journal, 1999, vol. 69, pp. 296–302. DOI: 10.1016/S0034-4257(99)00023-1. Groot A. Fifteen-year results of black spruce uneven-aged silviculture in Ontario, Canada. Forestry, 2013, vol. 87, is.1, pp. 99–107. DOI: 10.1093/forestry/cpt021.

9. Hamilton J.A., El Kayal W., Hart A.T., Runcie D.E., Arango-Velez A., Cooke J.E.K. The joint influence of photoperiod and temperature during growth cessation and development of dormancy in white spruce (Picea glauca). Tree Physioljgy, 2016, vol. 36, is. 11, pp. 1432–1448. DOI: 10.1093/treephys/tpw061.

10. Herrera F., Leslie A.B., Shi G., Knopf P., Ichinnorov N., Takahashi M., Crane P.R., Herendeen P.S. New fossil Pinaceae from the Early Cretaceous of Mongolia. Canadian Journal of Botany, 2016, vol. 94, is. 9, pp. 885–915. DOI: 10.1139/cjb-2016-0042.

11. Houpis J.L.J., Surano K.A., Cowles S., Shinn J.H. Chlorophyll and carotenoid concentrations in two varieties of Pinus ponderosa seedlings subjected to long-term elevated carbon dioxide. Tree Physiology, 1988, vol. 4 (2), pp. 187–193. DOI: 10.1093/treephys/4.2.187.

12. Konôpka B., Pajtík J., Šebeň V., Lukac M. Belowground biomass functions and expansion factors in high elevation Norway spruce. Forestry, 2011, vol. 84, is. 1, pp. 41–48. DOI: 10.1093/forestry/cpq042.

13. Kulkova A.V. Biological aspects of rooting of different Picea species. Reports of TLC. International scientific conference dedicated to the 130th anniversary of N.I. Vavilov. Moscow, 05–07 December 2017, 2018, pp. 22–24. (In Russ.)

14. Kulkova A.V., Besschetnova N.N. Ground germination of Shrenka spruce seeds during introduction to the Nizhny Novgorod region. Actual problems of the forest complex. Ed. by E.A. Pamfilov. Collection of proceedings, Bryansk: BGITA, 2020b, is. 58, pp. 97–100. (In Russ.)

15. Kulkova A.V., Besschetnova N.N., Besschetnov V.P. Application of stimulating treatment in rooting of conic spruce cuttings. Izvestia Sankt-Peterburgskoj Lesotehniceskoj Akademii, 2020а, is. 232, pp. 79–91. DOI: 10.21266/2079-4304.2020.232.79-91. (In Russ.)

16. Lichtenthaler H.K. Chlorophylls and carotenoids, the pigments of photosynthetic biomembranes. Methods in Enzymology: (eds) Douce R., Packer L., 1987, vol. 148. Academic Press Inc., New York, pp. 350–382. DOI: 10.1016/0076-6879(87)48036-1.

17. Lichtenthaller H.K. Biosynthesis and Accumulation of Isoprenoid Carotenoids and Chlorophylls and Emission of Isoprene by Leaf Chloroplasts. Bulletin of the Georgian National Academy of sciences, 2009, vol. 3, no. 3, pp. 81–94.

18. Lichtenthaller H.K., Wellburn A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 1983, vol. 11, no. 6, pp. 591–592.

19. Lindgren D. Picea abies breeding in Sweden is based on clone testing. Dendrobiology, 2009, vol. 61, pp. 79–82.

20. Luginina L.I., Besschetnov V.P. Pigmentation of needles of seedlings of spruce (Picea abies L.) with a closed root system. Actual problems of the forest complex: materials of the XVIII International scientific and technical Internet conference «Forest-2017»: Bryansk, may 1–30, 2017 Under the General editorship of E.A. Pamfilov. Collection of proceedings. Bryansk: BSTU, 2017, is. 47, pp. 131–137. (In Russ.)

21. Major J.E., Barsi D.C., Mosseler A., Campbell M. Genetic variation and control of chloroplast pigment concentrations in Picea rubens, Picea mariana and their hybrids. I. Ambient and elevated [CO 2] environments. Tree Physioljgy, 2007, Vol. 27, is. 30, pp. 353–364. DOI: 10.1093/treephys/27.3.353.

22. Morgenstern E.K., Fowler D.P. Genetics and Breeding of Black Spruce and Red Spruce. Forestry Chronicle, 1969, vol. 45, nu. 6, pp. 408–412. DOI: 10.5558/tfc45408-6.

23. Nielsen C.C.N., Rasmussen H.N. Frost hardening and dehardening in Abies procera and other conifers under differing temperature regimes and warm-spell treatments. Forestry, 2008, vol. 82, is. 1, pp. 43–59. DOI: 10.1093/forestry/cpn048.

24. Porth I., Bull G., Ahmed S., El-Kassaby Y.A., Boyland M. Forest genomics research and development in Canada: Priorities for developing an economic framework. Forestry Chronicle, 2015, vol. 91, nu. 1, pp. 60–70, DOI: 10.5558/tfc2015-011.

25. Rosenthal1 S.I., Camm E.L. Photosynthetic decline and pigment loss during autumn foliar senescence in western larch (Larix occidentalis). Tree Physiology, 1997, vol. 17 (12), pp. 767–775. DOI: 10.1093/treephys/17.12.767.

26. Schaberg P.G., Snyder M.C., Shane J.B., Donnelly J.R. Seasonal patterns of carbohydrate reserves in red spruce seedlings. Tree Physiology, 2000, vol. 20, no. 8, pp. 549–555. DOI: 10.1093/treephys/20.8.549.

27. Stinziano, J.R., Hüner N.P.A., Way D.A. Warming delays autumn declines in photosynthetic capacity in a boreal conifer, Norway spruce (Picea abies). Tree Physioljgy, 2015, vol. 35, is. 12, pp. 1303–1313. DOI: 10.1093/treephys/tpv118.

28. Verheggen F.J., R.E. Farmer Jr. Genetic and Environmental Variance in Seed and Cone Characteristics of Black Spruce in a Northwestern Ontario Seed Orchard. Forestry Chronicle, 1983, vol. 59, nu. 4, pp. 191–193. DOI: 10.5558/tfc59191-4.

29. Wellburn A.R. The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. Journal of plant physiol, 1994, vol. 144 (3), pp. 307–313.

30. Wiensczyk A., Swift K., Morneault A., Thiffault N., Szuba K., Bell F.W. An Overview of The Efficacy of Vegetation Management Alternatives for Conifer Regeneration in Boreal Forests. Forestry Chronicle, 2011, vol. 87, nu. 2, pp. 175–200. DOI: 10.5558/tfc2011-007.

31. Yershov P.V., Besschetnova N.N., Besschetnov V.P. Multivariate estimation of European spruce (Picea abies) plus trees by the pigment composition of needles. Izvestia Sankt-Peterburgskoj Lesotehniceskoj Akademii, 2018, is. 233, pp. 78–99. (In Russ.)

32. Yershov P.V., Besschetnova N.N., Besschetnov V.P. Pigment composition of needles of plus trees of European spruce. Coniferous of boreal zone, 2017, vol. XXXVI, no. 3-4, pp. 29–37. (In Russ.)


Review

For citations:


Kulkova A.V., Besschetnova N.N., Besschetnov V.P. Seasonal changes in the pigment composition of needles of representatives of the genus spruce in the Nizhny Novgorod region. Izvestia Sankt-Peterburgskoj lesotehniceskoj akademii. 2021;(235):22-39. (In Russ.) https://doi.org/10.21266/2079-4304.2021.235.22-39

Views: 80


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-4304 (Print)
ISSN 2658-5871 (Online)