Current carbon storage in forests of two ecoregions of Russia
https://doi.org/10.21266/2079-4304.2021.237.75-96
Abstract
Due to the global warming of the climate, the assessment of the carbon cycle in forest ecosystems has become particularly important. One method for determining deposited carbon is based on the use of biomass expansion factors (BEF) and State Forest Inventory (SFI) data. By combining BEF models with SFI data in two ecoregions of Russia – taiga and forest-steppe – it was found that over a 20–25-year period, accumulating the carbon deposition in the taiga zone is significantly less (5%) compared to the forest-steppe zone (39%). Despite the existing risks of natural disasters in the forest-steppe ecotone, there is a significant increase in carbon deposition over a quarter of a century. This was due to the high proportion of young stands at the beginning of the analyzed period, which have increased growth in relation to old stands. Comparable results were obtained by the same method in different ecoregions of the planet (from 8% in 5 years in China to 68% in 50 years in Japan). A comparison of the results obtained by the proposed method and the IIASA (Austria) method showed a minimal discrepancy (3%), which gives reason to consider the above estimates of carbon deposition close to reality. However, uncertainties remain related to the quality of the SFI data and the carbon deposition in the soil.
About the Authors
V. А. UsoltsevRussian Federation
USOLTSEV Vladimir A. – DSc (Agriculture), professor of the Department of Forestry; chief researcher at the Botanical Garden
620100. Sibirskiy Trakt. 37. Yekaterinburg
V. F. Kovyazin
Russian Federation
KOVIAZIN Vasiliy F. – DSc (Biology), Рrofessor
199106. 21 line V.O. 2. St. Petersburg
I. S. Tsepordey
Russian Federation
TSEPORDEY Ivan S. – PhD (Agriculture), scientist at Botanical Garden
620144. 8 Marta str. 202a. Yekaterinburg
References
1. Alekseev V.A., Markov M.V. Statistical data on the forest fund and changes in forest productivity in Russia in the second half of the twentieth century. St. Petersburg: Saint-Petersburg Forest Ecological Center, 2003. 272 p. (In Russ.)
2. Analytical report. Risks of the implementation of the Paris Climate Agreement for the economy and national security of Russia. Moscow: Institute of the Problems of Natural Monopolies, 2016. 114 p. (In Russ.)
3. Armand A.D. Homeostasis of ecosystems // Ecosystems in critical states. Moscow: Nauka Publ., 1989, pp. 10–23.
4. Armand A.D., Vedyushkin M.A. Trigger geosystems. Moscow: Institute of Geography of the USSR Academy of Sciences, 1989. 51p.
5. Bazilevich N.I., Grebenshchikov O.S., Tishkov A.A. Geographical regularities of the structure and functioning of ecosystems. Moscow: Nauka Publ., 1986. 297 p. (In Russ.)
6. Chapin F.S., Woodwell G.M., Randerson J.T., Rastetter E.B., Lovett G.M., Baldocchi D.D., Clark D.A., Harmon M.E., Schimel D.S., Valentini R., Wirth C., Aber J.D., Cole J.J., Goulden M.L., Harden J.W., Heimann M., Howarth R.W., Matson P.A., McGuire A.D., Melillo J.M., Mooney H.A., Neff J.C., Houghton R.A., Pace M.L., Ryan M.G., Running S.W., Sala O.E., Schlesinger W.H., Schulze E.-D. Reconciling carboncycle concepts, terminology and methodology. Ecosystems, 2005, vol. 9,. pp. 1041–1050. DOI: 10.1007/s10021-005-0105-7.
7. Dolman A.J., Shvidenko A., Schepaschenko D., Ciais P., Tchebakova N., Chen T., van der Molen M.K., Belelli Marchesini L., Maximov T.C., Maksyutov S., Schulze E.- D. An estimate of the terrestrial carbon budget of Russia using inventory-based, eddy covariance and inversion methods. Biogeosciences. 2012, vol. 9, pp. 5323–5340. DOI:10.5194/bg-9-5323-2012.
8. Durkaya B., Durkaya A., Kaptan S. BEF-BCEF calculations for Turkey's impotant coniferous species. Bartın Orman Fakültesi Dergisi, 2020, vol. 22 (3), pp. 1053-1060. DOI: 10.24011/barofd.806310.
9. Efimov А.I. Climate. Geographical atlas of the Orenburg Region. Moscow: DIKPubl., 1999. pp. 32–35. (In Russ.)
10. Erdős L., Ambarlı D., Anenkhonov O.A., Bátori Z., Cserhalmi D., Kiss M., Kröel-Dulay G., Liu H., Magnes M., Molnár Z., Naqinezhad A., Semenishchenkov Y.A., Tölgyesi C., Török P. The edge of two worlds: A new review and synthesis on Eurasian forest-steppes. Applied Vegetation Science, 2018. vol. 21(3), pp. 345-362. DOI: 10.1111/avsc.12382.
11. Fang J.Y., Guo Z.D., Piao S.L., Chen A.P. Terrestrial vegetation carbon sinks in China, 1981-2000. Science in China Series D: Earth Sciences, 2007, vol. 50 (9), pp. 1341–1350.
12. Fang J.Y., Oikawa T., Kato T., Mo W., Wang Z.H. Biomass carbon accumulation by Japan’s forests from 1947–1995 // Global Biogeochemical Cycles. 2005. Vol. 19. GB2004. DOI:10.1029/2004GB002253.
13. Gitarsky M.L., Zamolodchikov D.G., Korovin G.N., Karaban R.T. Emission and absorption of greenhouse gases in the forests of Russia in connection with the fulfillment of obligations under the UN Climate Convention. Lesovedenie (Russian Journal of Forest Science), 2006, no. 6, pp. 34–44. (In Russ.)
14. González-García M., Hevia A., Majada J., Barrio-Anta M. Aboveground biomass estimation at tree and stand level for short rotation plantations of Eucalyptus nitens (Deane & Maiden) Maiden in Northwest Spain. Biomass and Bioenergy, 2013, vol. 54., pp. 147–157. DOI: 10.1016/j.biombioe.2013.03.019.
15. Goodale C.L., Apps M.J., Birdsey R.A., Field C.B., Heath L.S., Houghton R.A., Jenkins J.C., Kohlmaier G.H., Kurz W., Liu S.R., Nabuurs G.-J., Nilsson S., Shvidenko A. Forest carbon sinks in the Northern Hemisphere. Ecological Applications,. 2002, vol. 12, pp. 891–899. DOI: 10.2307/3060997.
16. Guo Z.D., Fang J.Y., Pan Y.D., Birdsey R. Inventory-based estimates of forest biomass carbon stocks in China: A comparison of three methods. Forest Ecology and Management, 2010, vol. 259, pp. 1225-1231. DOI: 10.1016/j.foreco.2009.09.047.
17. Houghton R.A., Hall F., Goetz S.J. The importance of biomass in the global carbon cycle. Geophysical Research Letters, 2009, vol. 114. G00E03. DOI: 10.1029/2009JG000935.
18. IPCC. Good Practice Guidance for Land Use, Land-Use Change and Forestry. IPCC/OECD/IEA/IGES, Hayama, Japan, 2003.
19. Isaev A.S., Korovin G.N., Utkin A.I., Pryazhnikov A.A., Zamolodchikov D.G. Estimation of carbon pool and its annual deposition in phytomass of forest ecosystems in Russia. Lesovedenie (Russian Journal of Forest Science), 1993, no. 5, pp. 3–10. (In Russ.)
20. Kharuk V.I., Petrov I.A., Dvinskaya M.L., Im S.T., Shushpanov A.S. Comparative reaction of larch (Larixsibirica Ledeb.) radial increment on climate change in the forest-steppe and highlands of Southern Siberia. Contemporary Problems of Ecology, 2018, vol. 11 (4), pp. 388–395. DOI: 10.1134/S1995425518040042.
21. Kinnunen J., Maltamo M., Päivinen R. Standing volume estimates of forests in Russia: how accurate is the published data? // Forestry. 2007. Vol. 80 (1). P. 53-64. DOI: 10.1093/forestry/cpl042.
22. Kolomyts E.G. Boreal ecotone and geographic zonality: atlas-monograph. Moscow: Nauka Publ., 2005. 389 p. (In Russ.)
23. Kolomyts E.G. Ecotone as an object of physical and geographical research. Izvestia of Academy of Sciences of SSSR. Series Geograph, 1988, no. 5, pp. 24–36. (In Russ.)
24. Kolomyts E.G. Forest ecosystems and global climate changes: Experience of predictive modeling. Saarbrücken, Germany: Lambert Academic Publishing. GmBH& Co, 2012. 310 p.
25. Konôpka B., Pajtík J., Šebeň V., Lukac M. Belowground biomass functions and expansion factors in high elevation Norway spruce // Forestry. 2011. Vol. 84 (1). P. 41-48. DOI:10.1093/forestry/cpq042.
26. Lapenis A., Shvidenko A., Schepaschenko D., Nilsson S., Aiyyer A. Acclimation of Russian forests to recent changes in climate // Global Change Biology. 2005. Vol. 11. P. 1–13. DOI: 10.1111/j.1365-2486.2005.001069.x.
27. Lau A., Calders K., Bartholomeus H., Martius C., Raumonen P., Herold M., Vicari M., Sukhdeo H., Singh J., Goodman R.C. Tree biomass equations from terrestrial LiDAR: A case study in Guyana // Forests. 2019. Vol. 10, 527. DOI: 10.3390/f10060527.
28. Lehtonen A., Cienciala E., Tatarinov F., Mäkipää R. Uncertainty estimation of biomass expansion factors for Norway spruce in the Czech Republic // Annals of Forest Science. 2007. Vol. 64(2). P. 133-140. DOI: 10.1051/forest:2006097.
29. Liski J., Lehtonen A., Palosuo T., Peltoniemi M., Eggers T., Muukkonen P., Mäkipää R. Carbon accumulation in Finland's forests 1922–2004 – an estimate obtained by combination of forest inventory data with modelling of biomass, litter and soil // Annals of Forest Science. 2006. Vol. 63. P. 687–697. DOI: 10.1051/forest:2006049.
30. Makarevskiy M.F. Carbon storage and balance in forest and peatland ecosystems of Karelia. The Soviet Journal of Ecology, 1991, vol. 22 (3), pp. 3–10. (In Russ.)
31. Mansuy N., Gauthier S., Bergeron Y. Afforestation opportunities when stand productivity is driven by a high risk of natural disturbance: a review of the open lichen woodland in the eastern boreal forest of Canada // Mitigation and Adaptation Strategies for Global Change. 2013. Vol. 18. P. 245–264. DOI: 10.1007/s11027-012-9362-x.
32. Matthews G. The carbon content of trees // Forestry Commission. Technical Paper 4. Edinburgh, 1993. 21 p.
33. Moiseev B.N., Alyabina I.O. Assessment and mapping of components of carbon and nitrogen balances in major biomes of Russia. Proceedings of the Russian Academy of Sciences. The geographical series, 2007, no. 5, pp. 1–12. (In Russ.)
34. Moiseev B.N., Filipchuk A.N. The IPCC methodology for calculating annual carbon deposition and assessing its applicability for Russian forests. Lesnoe Khozyaistvo, 2009, no. 4, pp. 11–13. (In Russ.)
35. Nilsson S., Shvidenko A., Jonas M., McCallum I., Thomson A., Balzter H. Uncertainties of a regional terrestrial biota full carbon account: A systems analysis // Water, Air, & Soil Pollution: Focus. 2007. Vol. 7. P. 425–441. DOI: 10.1007/s11267-006-9119-1.
36. Pan Y., Birdsey R.A., Fang J., Houghton R., Kauppi P.E., Kurz W.A., Phillips O.L., Shvidenko A., Lewis S.L., Canadell J.G., Ciais P., Jackson R.B., Pacala S.W., McGuire A.D., Piao S., Rautiainen A., Sitch S., Hayes D. A large and persistent carbon sink in the world's forests // Science. 2011. Vol. 333. P. 988-993. DOI: 10.1126/science.1201609.
37. Pan Y.D., Luo T.X., Birdsey R., Hom J., Melillo J. New estimates of carbon storage and sequestration in China’s forests: effects of age-class and method on inventory-based carbon estimation // Climatic Change. 2004. Vol. 67. P. 211–236.
38. Petersson H., Holm S., Ståhl G., Alger D., Fridman J., Lehtonen A., Lundström A., Mäkipää R. Individual tree biomass equations or biomass expansion factors for assessment of carbon stock changes in living biomass – A comparative study // Forest Ecology and Management. 2012. Vol. 270. P. 78–84. DOI:10.1016/j.foreco.2012.01.004.
39. Sharma T., Kurz W.A., Stinson G., Pellatt M.G., Li Q. A 100-year conservation experiment: Impacts on forest carbon stocks and fluxes // Forest Ecology and Management. 2013. Vol. 310. P. 242–255. DOI: 10.1016/j.foreco.2013.06.048.
40. Shvidenko A., Schepaschenko D., Maksyutov S. Impact of terrestrial ecosystems of Russia on the global carbon cycle from 2003-2008: An attempt of synthesis. Proceedings of the International Conference on Environmental Observations, Modeling and Information Systems ENVIROMIS-2010. Tomsk, 2010a, pp. 48–52.
41. Shvidenko A., Schepaschenko D., Mc Callum I., Santoro M., Schmullius C. Use of remote sensing products in a terrestrial ecosystems verified full carbon account: Experiences from Russia. Proceedings of I Conference «Earth Observation for Land- Atmosphere interaction Science», Frascat, Italy, 3–5 November 2010. ESA SP-688, 2011. CD ROM. 8 p.
42. Shvidenko A., Schepaschenko D., McCallum I., Nilsson S. Can the uncertainty of full carbon accounting of forest ecosystems be made acceptable to policymakers? Climatic Change, 2010b, vol. 103, pp. 137–157. DOI 10.1007/s10584-010-9918-2.
43. Shvidenko A., Schepaschenko D., Nilsson S., Bouloui Y. Semi-empirical models for assessing biological productivity of Northern Eurasian forests. Ecological Modelling, 2007, vol. 204, pp. 163–179. DOI: 10.1016/j.ecolmodel.2006.12.040.
44. Shvidenko A.Z., Schepaschenko D.G. Carbon budget of Russian forests // Siberian Journal of Forest Science, 2014, no. 1, pp. 69–92. (In Russ.)
45. Shvidenko A.Z., Schepaschenko D.G. Climate changes and wildfires in Russia. Lesovedenie (Russian Journal of Forest Science), 2013, no. 5, pp. 50–61. (In Russ)
46. Shvidenko A.Z., Schepaschenko D.G. What do we know about Russian forests today? Forest Inventory and Forest Planning, 2011, no 1–2, pp. 153–172. (In Russ.)
47. Stinson G., Kurz W., Smyth C., Neilson E., Dymond C., Metsaranta J., Boisvenue C., Rampley G.J., Li Q., White T.M., Blain D. An inventory-based analysis of Canada’s managed forest carbon dynamics, 1990 to 2008. Global Change Biology, 2011, vol. 17, pp. 2227–2244. DOI: 10.1111/j.1365-2486.2010.02369.x.
48. Tang X., Fehrmann L., Guan F., Forrester D.I., Guisasola R., Kleinn C. Inventory-based estimation of forest biomass in Shitai County, China: A comparison of five methods. Annals of Forest Research, 2016, vol. 59 (1), pp. 1–12. DOI: 10.15287/afr.2016.574.
49. Teobaldelli M., Somogyi Z., Migliavacca M., Usoltsev V.A. Generalized functions of bio-mass expansion factors for conifers and broadleaved by stand age, growing stock and site index. Forest Ecology and Management, 2009, vol. 257, pp. 1004–1013. DOI: 10.1016/j.foreco.2008.11.002.
50. Tölgyesi C., Bragina T.M., Valkó O., Deák B., Kelemen A., Gallé R., Bátori Z. Micro-environment–vegetation interactions in the sandy forest-steppe of Naurzum Nature Reserve, Kazakhstan. Abil E.A., Bragina T.M. (eds.). Biological diversity of Asian steppe. Kostanay: Kostanay State Pedagogical Institute, Kazakhstan, 2017, pp. 190–194.
51. Tölgyesi C., Valkó O., Deák B., Kelemen A., Bragina T.M., Gallé R., Erdős L., Bátoria Z. Tree–herb co-existence and community assembly in natural forest-steppe transitions. Plant Ecology & Diversity, 2018, vol. 11 (4), pp. 465–477. DOI:10.1080/17550874.2018.1544674.
52. Usoltsev V.A. Biological productivity of Northern Eurasia’s forests: methods, the database, and its applications. Yekaterinburg: Ural Branch of the Russian Academy of Sciences, 2007. 636 p. URL: http://elar.usfeu.ru/handle/123456789/3281]. (In Russ.)
53. Usoltsev V.A. Carbon sequestration by forests of the Ural region of Russia (on the base of Forest State Inventory data 2007). Yekaterinburg: Ural State Forest Engineering University, 2018. 265р. URL: https://core.ac.uk/download/pdf/162319276.pdf. DOI: 10.1111/gcb.14904. (In Russ.)
54. Usoltsev V.A., Terekhov G.G., Kanunnikova O.V. Carbon deposition in forests of the Ural Federal District. Contemporary Problems of Ecology, 2008, vol. 1 (3), pp. 295–303. DOI: 10.1134/S1995425508030028]. (In Russ.)
55. Usoltsev V.A., Voronov M.P., Chasovskikh V.P. Net primary production of Ural forests: Methods and results of automated estimating. Russian Journal of Ecology, 2011, vol. 42 (5), pp. 362–370. DOI: 10.1134/S1067413611050122. (In Russ.)
56. Utkin A.I. On the possible dynamics of forest vegetation in the ecotones of Northern Eurasia under global warming. Classification and dynamics of forests of the Far East: Proceedings of the International conference. Vladivostok: Institute of Biology & Soil Sciences Far Eastern Branch, Russian Academy of Sciences, 2001, pp. 125–127.
57. Utkin A.I., Zamolodchikov D.G., Korovin G.N., Nefedev V.V., Gulbe T.A1, Gulbe Ya.I., Gamburg S.P. Determination of stand carbon stock in sample plots: comparison of allometric and conversion-volumetric methods. Lesovedenie (Russian Journal of Forest Science), 1997, no. 5, pp. 51–66. (In Russ.)
58. Vaganov E.A., Vedrova E.F., Verkhovets S.V., Efremov S.P., Efremova T.T., Kruglov V.B., Onuchin A.A., Sukhinin A.I., Shibistova O.B. Forests and swamps of Siberia in the global carbon cycle. Contemporary Problems of Ecology, 2008, vol. 1 (2), pp. 168–182. DOI: 10.1134/S1995425508020021. (In Russ.)
59. Van Camp N., VandeWalle I., Mertens J., de Neve S., Samson R., Lust N., Lemeur R., Boeckx P., Lootens P., Beheydt D., Mestdagh I., Sleutel S., Verbeeck H., Van Cleemput O., Hofman G., Carliere L. Inventory-based carbon stock of Flemish forests: A comparison of European biomass expansion factors. Annals of Forest Science, 2004, vol. 61(7), pp. 677–682. DOI: 10.1051/forest:2004066.
60. Van Den Berge S., Vangansbeke P., Calders K., Vanneste T., Baeten L., Verbeeck H., Parvathi S., Moorthy K., Verheyen K. Biomass expansion factors for hedgerowgrown trees derived from terrestrial LiDAR. BioEnergy Research (Preprint), 2021. DOI: 10.1007/s12155-021-10250-y.
61. Vedyushkin M.A. Hysteresis in competitive systems. Factors and mechanisms of stability of geosystems. Moscow: Institute of Geography of the USSR Academy of Sciences, 1989, pp. 215–225. (In Russ.)
62. Vedyushkin M.A. Modeling of spatial transitions between phytocenoses. Mathematical modeling of plant populations and phytocenoses. Moscow: Nauka Publ., 1992, pp. 24–30.
63. Xu X.L., Cao M.K., Li K.R. Temporal-spatial dynamics of carbon storage of forest vegetation in China. Progress in Geography, 2007, vol. 26 (6), pp. 1–10 (in Chinese)
64. Yang K., Guan D. Changes in forest biomass carbon stock in the Pearl River Delta between 1989 and 2003. Journal of Environmental Sciences (China), 2008, vol. 20 (12), pp. 1439–1444. DOI: 10.1016/s1001-0742(08)62546-2.
65. Zamolodchikov D.G., Grabovskii V.I., Kraev G.N. Dynamics of Carbon Budget in Forests of Russia for Last Twenty Years. Lesovedenie (Russian Journal of Forest Science), 2011, no. 6, [[. 16–28. (In Russ.)
66. Zamolodchikov D.G., Korovin G.N., Gytarsky M.L. Carbon budget of managed forests of the Russian Federation. Lesovedenie (Russian Journal of Forest Science), 2007, no. 6, pp. 23–34.
67. Zamolodchikov D.G., Utkin A.I., Korovin G.N. Determination of carbon reserves by conversion-volumetric coefficients related to age of stands. Lesovedenie (Russian Journal of Forest Science), 1998, no. 3, pp. 84–93.
Review
For citations:
Usoltsev V.А., Kovyazin V.F., Tsepordey I.S. Current carbon storage in forests of two ecoregions of Russia. Izvestia Sankt-Peterburgskoj lesotehniceskoj akademii. 2021;(237):75-96. (In Russ.) https://doi.org/10.21266/2079-4304.2021.237.75-96