Preview

Izvestia Sankt-Peterburgskoj lesotehniceskoj akademii

Advanced search

Using artificial neural networks to determine the prospects of using hybrid tree clones for plantation reforestation

https://doi.org/10.21266/2079-4304.2021.237.288-298

Abstract

Assessing the prospects of using hybrid wood clones is one of the urgent tasks to improve the efficiency of plantation silviculture. One of the promising ways to solve this problem is the use of artificial neural networks (ANN). This research work is one of the few where ANN are used to solve such problems in forestry. Biometric data from 2018 hybrid aspen clones were taken to train neural networks and determine the potential use of hybrid wood clones for plantation silviculture. During this work, two ANNs were constructed where the architecture of the first network includes an input layer of 3 neurons, 1 hidden layer with 6 neurons and an output layer of 1 neuron, the architecture of the second network includes an input layer of 3 neurons, 2 hidden layers of 6 neurons and an output layer of 1 neuron, into which the normalized input biometric data were loaded for learning to determine the prospective use of hybrid wood species clones for plantation silviculture. Based on the results of this study, a comparison of the accuracy of ANN 1 and ANN 2 was made, which showed that ANN 1 was more accurate because its bias was 3,49% less than ANN 2. The results of this work confirmed the promise of using ANN to evaluate the use of hybrid wood clones for plantation reforestation. According to the evaluation of the calculated promisingness of ANN 1 for plantation silviculture, VTI, ESCH3 and ESCH5 hybrid wood clones were identified. The introduction of ANN in the forestry industry simplifies the evaluation of wood biometric results, especially for beginners, which provides a subsequent accurate assessment of the perspective of wood species.

About the Authors

A. K. Boitsov
St.Petersburg State Forest Technical University
Russian Federation

BOITSOV Alexandr K. – programmer of the department of information systems and technologies, master's student

194021. Institutskiy per. 5. St. Petersburg

Scopus AuthorID: 7245828400



A. A. Logachev
St.Petersburg State Forest Technical University
Russian Federation

LOGACHEV Aleksey A. – Senior Lecturer, Department of Information Systems and Technologies

194021. Institutskiy per. 5. St. Petersburg



H. G. Musin
Kazan State Agrarian University
Russian Federation

MUSIN Haris G. – DSc (Agriculture), Professor, Department of Forestry and Forest Cultures

420015. Karl Marx str. 65. Kazan, Republic of Tatarstan



References

1. Boitsov A.K., Duplinskaya D.D. Sovremennoye sostoyaniye lesnogo semenovodstva v Rossii. Agrarnaya nauka v usloviyakh modernizatsii i innovatsionnogo razvitiya APK Rossii: sb. materialov Vserossiyskoy nauchnometodicheskoy konferentsii s mezhdunarodnym uchastiyem. posvyashchennaya 90-letiyu Ivanovskoy gosudarstvennoy selskokhozyaystvennoy akademii imeni d.k. Belyayeva. Ivanovo: Ivanovskaya GSKhA, 2020, vol. 1, pp. 29–33. (In Russ.)

2. Boitsov A.K., Duplinskaya D.D. Vosproizvodstvo lesov v Rossii. Aktualnyye voprosy v lesnom khozyaystve : materialy IV mezhdunarodnoy nauchno-prakticheskoy konferentsii molodykh uchenykh. Sankt-Peterburg. 11–12 noyabrya 2020 goda. SPb.: Sankt-Peterburgskiy gosudarstvennyy lesotekhnicheskiy universitet imeni S.M. Kirova. 2020, pp. 15–20. (In Russ.)

3. Boitsov A.K., Zhigunov A.V. Otbor klonov gibridnykh topoley i gibridnoy osiny na povysheniye produktivnosti i ustoychivosti. Aktualnyye voprosy v lesnom khozyaystve : materialy II molodezhnoy mezhdunarodnoy nauchno-prakticheskoy konferentsii. Sankt-Peterburg. 14–15 noyabrya 2018 goda. SPb.: Poligraf ekspress. 2018, pp. 30–34. (In Russ.)

4. Boytsov A.K., Zhigunov A.V.. Grigoryev A.A.. Bondarenko A.S. Otsenka perspektivnosti ispolzovaniya klonov gibridnykh topoley i osiny dlya plantatsionnogo lesovyrashchivaniye v usloviyakh Severo-Zapada Rossii. Lesa Rossii: politika. promyshlennost. nauka. obrazovaniye: materialy tretyey mezhdunarodnoy nauchnotekhnicheskoy konferentsii. Sankt-Peterburg. 23–24 maya 2018 goda / pod red. V.M. Gedo. SPb.: Sankt-Peterburgskiy gosudarstvennyy lesotekhnicheskiy universitet im. S.M. Kirova, 2018, pp. 40–43. (In Russ.)

5. Fedorkov A.L. Obyem i kachestvo stvola gibridnoy i obychnoy osiny v klonovom arkhive. Izvestiya vysshikh uchebnykh zavedeniy. Lesnoy zhurnal, 2021, no. 1 (379), pp. 92–98. (In Russ.)

6. Kedrov A.V., Tarasov A.V. Klassifikatsiya lesnoy rastitelnosti metodom neyronnykh setey. Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Elektrotekhnika. informatsionnyye tekhnologii. sistemy upravleniya, 2017, no. 22, pp. 44–54. (In Russ.)

7. Mikhova E.D. Klassifikatsiya porodnogo sostava lesa na aerofotosnimke s ispolzovaniyem neyronnoy seti. Aktualnyye problemy aviatsii i kosmonavtiki, 2016, no. 1 (12), pp. 632–634. (In Russ.)

8. Poleshchuk O.M., Vasilyev S.B. Neyronechetkaya model dlya prognoza semenosheniya lesnykh kultur v usloviyakh tekhnogennykh landshaftov. Lesnoy vestnik / Forestry bulletin, 2018, no. 22 (1), pp. 31–35. (In Russ.)

9. Stankevich T.S. Modelirovaniye rasprostraneniya lesnogo pozhara pri nestatsionarnosti i neopredelennosti posredstvom iskusstvennogo intellekta i glubokogo mashinnogo obucheniya. Vestnik Astrakhanskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Upravleniye. vychislitelnaya tekhnika i informatika, 2019, no. 3, pp. 97–107. (In Russ.)

10. Stefanidou A., . Dragozi E.. Tompoulidou M.. Yanis Z.G. Kartirovaniye lesnykh i ne lesnykh ploshchadey s ispolzovaniyem Landsat TM i algoritma «iskusstvennyye neyronnyye seti» (ANNs). Vestnik Povolzhskogo gosudarstvennogo tekhnologicheskogo universiteta. Seriya: Les. Ekologiya. Prirodopolzovaniye, 2015, no. 1(25), pp. 22–33. (In Russ.)

11. Stolnov A.S., Iozus A.P.. Kryuchkov S.N. Sovremennoye sostoyaniye i perspektivy razvitiya lesnogo semenovodstva v Rossii//Sovremennyye problemy nauki i obrazovaniya. Penza: Izd. dom «Akademiya Estestvoznaniya», 2011, no. 6. 275 p. (In Russ.)

12. Yasinskiy F.N.. Potemkina O.V.. Sidorov S.G.. Evseyeva A.V. Prognozirovaniye veroyatnosti vozniknoveniya lesnykh pozharov s pomoshchyu neyrosetevogo algoritma na mnogoprotsessornoy vychislitelnoy tekhnike. Vestnik Ivanovskogo gosudarstvennogo energeticheskogo universiteta, 2011, no. 2, pp. 82–84. (In Russ.)

13. Zhigunov A.P., Markova I.A.. Grigoryev A.A. i dr. Plantatsionnoye lesovyrashchivaniye v usloviyakh Severo-Zapada Rossii. Lesa Rossii: politika. promyshlennost. nauka. obrazovaniye : materialy nauchno-tekhnicheskoy konferentsii.. Sankt-Peterburg. 13–15 aprelya 2016 goda / pod. red. V.M. Gedo. SPb.: Sankt-Peterburgskiy gosudarstvennyy lesotekhnicheskiy universitet im. S.M. Kirova, 2016, pp. 143–145. (In Russ.)

14. Zhigunov A.V., Danilov D.A.. Zaripov R.R. Sozdaniye plantatsiy gibridnykh topoley i Osin v Leningradskoy oblasti na postagrogennykh zemlyakh. Razvitiye zemledeliya v Nechernozemye: problemy i ikh resheniye : sb. trudov po itogam mezhdunarodnoy nauchno-prakticheskoy konferentsii. Sankt-Peterburg – Pushkin. 09 noyabrya 2016 goda. Sankt-Peterburg – Pushkin: Federalnoye gosudarstvennoye byudzhetnoye nauchnoye uchrezhdeniye «Leningradskiy nauchno-issledovatelskiy institut selskogo khozyaystva «Belogorka». 2016, pp. 157–161. (In Russ.)


Review

For citations:


Boitsov A.K., Logachev A.A., Musin H.G. Using artificial neural networks to determine the prospects of using hybrid tree clones for plantation reforestation. Izvestia Sankt-Peterburgskoj lesotehniceskoj akademii. 2021;(237):288-298. (In Russ.) https://doi.org/10.21266/2079-4304.2021.237.288-298

Views: 87


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-4304 (Print)
ISSN 2658-5871 (Online)