Preview

Izvestia Sankt-Peterburgskoj lesotehniceskoj akademii

Advanced search

Interrelations of stem and crown diameters of forest-forming species of Eurasia

https://doi.org/10.21266/2079-4304.2024.250.176-199

Abstract

Due to climate change and the potential possibility of its stabilization with the help of managed forests and assessment of their carbon depositing capacity, the possibility of operational assessment of phytomass and organic carbon of forest cover is of particular relevance. Remote sensing of forests based on unmanned aerial vehicles made it possible to obtain the parameters of tree crowns from as close a distance as possible, which ensures high adequacy of models for assessing the phytomass of trees by crown diameter. Along with them, thousands of allometric models have been published to estimate the phytomass of trees by stem diameter. To combine them, it is necessary to know the interrelationships of the stem and crown diameters. When using the empirical data of 3,100 model trees for seven coniferous and 2,470 trees for sixteen deciduous species and genera (subgenera), 23 allometric models of crown diameter versus stem diameter and stem diameter versus crown diameter have been developed, significant at the level of t001 and higher. The first ones are designed to be combined with published models of phytomass of trees in connection with the crown diameter, and the second ones are designed to be combined with published models of phytomass in connection with the stem diameter. All genera were ranked both by crown diameter and stem diameter, followed by rank regression analysis, including the interdependence of two rank distributions of 23 genera. A negative relationship has been established between the rank distributions of genera by crown diameter and stem diameter, while the dependence of the empirical data of stem diameter on crown diameter is of positive relationship. Thus, the relationship of the crown diameter with the stem diameter can be either negative or positive, depending on a particular application and context.

About the Authors

V. A. Usoltsev
Ural State Forest Engineering University; Botanical Garden, Ural Branch of the Russian Academy of Sciences; Ural State Economic University
Russian Federation

Usoltsev Vladimir A. – DSc (Agriculture), professor of the Department of Forest Taxation and Forest Management, Ural State Forest Engineering University, chief researcher at the Botanical Garden, Ural Branch of the Russian Academy of Sciences, scientist of the Ural State Economic University

620100. Sibirskiy Trakt str. 37. Yekaterinburg



I. S. Tsepordey
Botanical Garden of Ural Branch of RAS
Russian Federation

Tsepordey Ivan S. – PhD (Agriculture), senior researcher

620100. Sibirskiy Trakt str. 37. Yekaterinburg



N. I. Plyukha
Ural State Economic University
Russian Federation

Plyukha Nikolay I. – PhD student of the Department of Forest Taxation and Forest Management

620100. Sibirskiy trakt str. 37. Yekaterinburg



References

1. Aldred A.H., Alemdag I.S. Guidelines for forest biomass inventory. Information Report PI-X-77. Petawawa National Forestry Institute; Canadian Forestry Service, 1988. 133 p.

2. Alekseev V.A. Light regime of the forest. L.; Nauka, 1975. 227 p. (In Russ.)

3. Ayhan H.O. Crown diameter: dbh relations in Scots pine. Arbor, 1974, vol. 5, рр. 15–25.

4. Babenko T.S., Nagimov Z.Ya., Moiseev P.A. Patterns of growth of trees and stands of Siberian spruce in the highlands of the Southern Urals (on the example of the town of Maly Iremel). Yekaterinburg; Ural State Forestry Engineering University, 2008. 125 p. (In Russ.)

5. Baskerville G.L. Use of logarithmic regression in the estimation of plant biomass. Canadian Journal of Forest Research, 1972, vol. 2(1), pp. 49–53.

6. Bogdanov A.P., Aleshko R.A., Ilyintsev A.S. Identification of the relationship of the diameter of tree crowns with various taxation indicators in the North taiga forest area. Questions of forest Science, 2019, vol. 2(4), pp. 1–10 (In Russ.)

7. Bonnor G.M. Stem diameter estimates from crown width and tree height. Commonwealth Forestry Review, 1968, vol. 47, pp. 8–13.

8. Chetyrkin E.M. Statisticheskie metody prognozirovaniya (Statistical forecasting methods), M.; Statistika, 1977. 200 p. (In Russ.)

9. Curtin R.A. Stand density and the relationship of crown width to diameter and height in Eucalyptus obliqua. Australian Forestry, 1964, vol. 28(2), pp. 91–105.

10. Dalponte M., Coomes D.A. Tree-centric mapping of forest carbon density from air-borne laser scanning and hyperspectral data. Methods in Ecology and Evolution, 2016, vol. 7(10), pp. 1236–1245. DOI: 10.1111/2041-210X.12575.

11. Dawkins H.C. Crown diameters: their relation to bole diameter in tropical forest trees. Commonwealth Forestry Review, 1963, vol. 42, pp. 318–333.

12. Deluzet M., Erudel T., Briottet X., Sheeren D., Fabre S. Individual tree crown delineation method based on multi-criteria graph using geometric and spectral information: Application to several temperate forest sites. Remote Sensing, 2022, vol. 14, article 1083. DOI: 10.3390/rs14051083.

13. Duchaufour A. L’amenagement de la Foret de Compiegne. Revue Eaux et Foret, 1903, vol. 42, pp. 65–78.

14. Falaleev E.N., Polyakov V.S. The course of growth of modal fir stands of the Angarsk district. In: The course of growth of the main forest-forming species of Siberia. Krasnoyarsk: SibTI, 1975, p. 125. (In Russ.)

15. Fischer F.J., Maréchaux I., Chave J. Improving plant allometry by fusing forest models and remote sensing. New Phytologist, 2019, vol. 223, pp. 1159–1165. DOI: 10.1111/nph.15810.

16. Freudenberg M., Magdon P., Nölke N. Individual tree crown delineation in highresolution remote sensing images based on U-Net. Neural Computing and Applications, 2022, vol. 34, pp. 22197–22207. DOI: 10.1007/s00521-022-07640-4.

17. Fu L., Sun H., Sharma R.P., Lei Y., Zhang H., Tang S. Nonlinear mixed-effects crown width models for individual trees of Chinese fir (Cunninghamia lanceolata) in south-central China. Forest Ecology and Management, 2013, vol. 302, pp. 210–220. DOI: 10.1016/j.foreco.2013.03.036/.

18. Gering L.R., May D.M. The relationship of diameter at breast height and crown diameter for four species groups in Hardin County, Tennessee. Southern Journal of Applied Forestry, 1995, vol. 19, рр. 177–181.

19. Gonzalez-Benecke C.A., Gezan S.A., Samuelson L.J., Cropper W.P., Leduc D.J., Martin T.A. Estimating Pinus palustris tree diameter and stem volume from tree height, crown area and stand-level parameters. Journal of Forestry Research, 2014, vol. 25, pp. 43–52. DOI: 10.1007/s11676-014-0427-4.

20. Gould S. Allometry and size in ontogeny and phylogeny. Biological Reviews, 1966, vol. 41, pp. 587–640.

21. Grishchenko A.V., Kucheryavy V.A., Tomchuk R.I., Zadorozhny V.V. Tree crown: industrial and recreational use. Lviv; Vishcha shkola, 1985. 168 p. (In Russ.)

22. Gülci S., Akay A.E., Gülci N., Tas I. An assessment of conventional and dronebased measurements for tree attributes in timber volume estimation: A case study on stone pine plantation. Ecological Informatics, 2021, vol. 63(4), article 101303. DOI: 10.1016/j.ecoinf.2021.101303.

23. Guo Q., Su Y., Hu T. Applications of LiDAR in biodiversity conservation, ecohydrology, and ecological process modeling of forest ecosystems. In: LiDAR Principles, Processing and Applications in Forest Ecology / Guo Q., Su Y., Hu T. (eds.). Academic Press; Cambridge, MA, USA, 2023, pp. 407–442. DOI: 10.1016/B978-0-12-823894-3.00013-X.

24. Guttinger S. The limits of replicability. European Journal for Philosophy of Science, 2020, vol. 10, pp. 1–17. DOI: 10.1007/s13194-019-0269-1.

25. Hemery G.E., Savill P.S., Pryor S.N. Applications of the crown diameter–stem diameter relationship for different species of broadleaved trees. Forest Ecology and Management, 2005, vol. 215, pp. 285–294. DOI: 10.1016/j.foreco.2005.05.016.

26. Hernández-Cole J., Ortiz-Malavassi E., Moya R., Murillo O. Evaluation of unmanned aerial vehicles (UAV) as a tool to predict biomass and carbon of Tectona grandis in silvopastoral systems (SPS) in Costa Rica. Drones, 2021, vol. 5(2), article 47. DOI: 10.3390/drones5020047.

27. Hoffmann C.W., Usoltsev V.A. Tree-crown biomass estimation in forest species of the Ural and of Kazakhstan. Forest Ecology and Management, 2002, vol. 158, pp. 59– 69. DOI: 10.1016/S0378-1127(00)00669-1.

28. Hosoda K, Iehara T. Aboveground biomass equations for individual trees of Cryptomeria japonica, Chamaecyparis obtusa and Larix kaempferi in Japan. Journal of Forestry Research, 2010, vol. 15(5), pp. 299–306. DOI: 10.1007/s10310-010-0192-y.

29. Jenkins J.C., Chojnacky D.C., Heath L.S., Birdsey R.A. Comprehensive database of diameter-based regressions for North American tree species. USDA Forest Service Northeastern Research Station. General Technical Report NE-319; 2004. 47 p. URL: http://www.fs.fed.us/ne.

30. Jucker T., Caspersen J., Chave J., Antin C., Barbier N., Bongers F. et al. Allometric equations for integrating remote sensing imagery into forest monitoring programs. Global Change Biology. 2017, vol. 23, pp. 177–190. DOI: 10.1111/gcb.13388.

31. Jucker T., Fischer F. J., Chave J., Coomes D.A., Caspersen J., Ali A. et al. Tallo: a global tree allometry and crown architecture database. Global Change Biology, 2022, vol. 28, pp. 5254–5268. DOI: 10.1111/gcb.16302.

32. Kalliovirta J., Tokola T. Functions for estimating stem diameter and tree age using tree height, crown width and existing stand database information. Silva Fennica, 2005, vol. 39(2), pp. 227–248. DOI: 10.14214/sf.386.

33. Krajicek J.E., Brinkman K.A., Gingrich S.F. Crown competition – A measure of density. Forest Science, 1961, vol. 7, pp. 35–42.

34. Lacerda T.H.S., Miranda E.N., Lopes I.L., Fonseca G.R., França L.C., Gomide L.R. Feature selection by genetic algorithm in nonlinear taper model. Canadian Journal of Forest Research, 2022, vol. 52(5), pp. 769–779. DOI: 10.1139/cjfr-2021-0265.

35. Lei Y., Fu L., Affleck D.L.R., Nelson A.S., Shen C., Wang M., Zheng J., Ye Q., Yang G. Additivity of nonlinear tree crown width models: Aggregated and disaggregated model structures using nonlinear simultaneous equations. Forest Ecology and Management, 2018, vol. 427, pp. 372–382. DOI: 10.1016/j.foreco.2018.06.013.

36. Liu S.,Wang J., Jiang L. Assessment of potential prediction and calibration methods of crown width for Dahurian larch (Larix gmelinii Rupr.) in Northeastern China. Forests, 2023, vol. 14(10), article 2022. DOI: 10.3390/f14102022.

37. Lockhart B.R., Weih R.C., Smith K.M. Crown radius and diameter at breast height relationships for six bottomland hardwood species. Journal of the Arkansas Academy of Science, 2005, vol. 59, pp. 110–115. URL: http://scholarworks.uark.edu/jaas/vol59/iss1/16.

38. Lowman M.D., Schowalter T.D. Plant science in forest canopies – The first 30 years of advances and challenges (1980–2010). New Phytologist, 2012, vol. 194(1). pp. 12–27. DOI: 10.1111/j.1469-8137.2012.04076.x.

39. Luo Y., Wang X., Ouyang Z., Lu F., Feng L., Tao J.. A review of biomass equations for China's tree species. Earth System Science Data, 2020, vol. 12(1), pp. 21–40. DOI: 10.5194/essd-12-21-2020.

40. Luzganov A.G., Solod’ko A.S. Crown shape and scattered light. IVUZ. Forestry Journal, 1968, no. 6, pp. 29–33. (In Russ.)

41. Mensah S., Pienaar O.L., Kunneke A., Du Toit B., Seydack A., Uhl E., Pretzsch H., Seifert T. Height-diameter allometry in South Africa’s indigenous high forests: Assessing generic models performance and function forms. Forest Ecology and Management, 2018, vol. 410, pp. 1–11. DOI: 10.1016/j.foreco.2017.12.030.

42. Mitropolsky A.K. Technique of statistical computations. M.: Nauka, 1971. 576 p. (In Russ.)

43. Molchanov A.G. CO2 balance in ecosystems of pine forests and oak forests in different forest zones. Tula; Grif and K, 2007. 284 p. (In Russ.)

44. Monserud R.A., Sterba H. A basal area increment model for individual trees growing in even- and uneven-aged forest stands in Austria. Forest Ecology and Management, 1996, vol. 80(1-3), pp. 57–80. DOI: 10.1016/0378-1127(95)03638-5.

45. Muukkonen P, Mäkipää R. Biomass equations for European trees: Addendum. Silva Fennica, 2006, vol. 40(4), pp. 763-773. URL: http://www.metla.fi/silvafennica/full/sf40/sf404763.pdf.

46. Nagimov Z.Ya., Babenko T.S., Shevchenko I.G., Rakhmanov I.V., Moiseev P.A. Features of growth and formation of phytomass of spruce stands in the highlands of the Southern Urals (on the example of the town of Maly Iremel). Conifers of the boreal area, 2007, vol. XXIV, iss. 4–5. pp. 427–430. (In Russ.)

47. Panagiotidis D., Abdollahnejad A., Surový P., Chiteculo V. Determining tree height and crown diameter from high-resolution UAV imagery, International Journal of Remote Sensing, 2017, vol. 38, pp. 2392–2410. DOI: 10.1080/01431161.2016.1264028.

48. Paramonov A.A., Tretyakov S.V., Koptev S.V. Yield tables of normal willow stands of the taiga zone of the north-east of the European part of Russia. Proceedings of the St. Petersburg Scientific Research Institute of Forestry, 2021, No. 2, pp. 17–27. (In Russ.)

49. Paramonov A.A., Usoltsev V.A., Tretyakov S.V., Koptev S.V., Karaban A.A., Tsvetkov I.V., Davydov A.V., Tsepordey I.S. Biomass of willow trees and its allometric models in the conditions of the Arkhangelsk region. Forests of Russia and the economy in them, 2022, No. 4, pp. 10–19. DOI: 10.51318/FRET.2022.27.41.002. (In Russ.)

50. Poorter H., Jagodzinski A.M., Ruiz-Peinado R., Kuyah S., Luo Y., Oleksyn J., Usoltsev V.A., Buckley T.N., Reich P.B., Sack L. How does biomass allocation change with size and differ among species? An analysis for 1200 plant species from five continents. New Phytologist, 2015, vol. 208(3), pp. 736–749. DOI: 10.1111/nph.13571.

51. Rudge M.L.M., Levick S.R., Bartolo R.E., Erskine P.D. Modelling the diameter distribution of savanna trees with drone-based LiDAR. Remote Sensing, 2021, vol. 13(7), article 1266. DOI: 10.3390/rs13071266.

52. Russell M.B., Weiskittel A.R. Maximum and largest crown width equations for 15 tree species in Maine. Northern Journal of Applied Forestry, 2011, vol. 28(2), pp. 84– 91. DOI: 10.1093/njaf/28.2.84.

53. Sennov S.N. On the methodology of yield modeling // Modeling and monitoring the yield of stands. Kaunas: LitSHA, 1983, pp. 44–46. (In Russ.)

54. Sharma R.P., Bílek L., Vacek Z., Vacek S. Modelling crown width–diameter relationship for Scots pine in the central Europe. Trees, 2017, vol. 31(6), pp. 1875– 1889. DOI: 10.1007/s00468-017-1593-8.

55. Shi J., Feng Z., Liu J. Design and experiment of high precision forest resource investigation system based on UAV remote sensing images. Transactions of the Chinese Society of Agricultural Engineering, 2017, vol. 33(11), pp. 82–90. DOI: 10.11975/j.issn.1002-6819.2017.11.011.

56. Slavík M., Kuželka K., Modlinger R., Tomášková I., Surový P. UAV laser scans allow detection of morphological changes in tree canopy. Remote Sensing, 2020, vol. 12, article 3829. DOI: 10.3390/rs12223829.

57. Sönmez T. Diameter at breast height – crown diameter prediction models for Picea orientalis. African Journal of Agricultural Research, 2009, vol. 4(3), pp. 215– 219. URL: http://www.academicjournals.org/AJAR.

58. Štals T.A., Bardule A., Duminš K., Makovskis K., Lazdina D. Remote-sensed tree crown diameter as a predictor of stem diameter and above-ground biomass in Betula pendula Roth and Populus tremuloides Michx. × Populus tremula L. plantations. Land, 2023, vol. 12, article 2006. DOI: 10.3390/land12112006.

59. Sun Z., Wang Y., Pan L., Sun Y. Hegyi competition index decomposition to improve estimation accuracy of Larix olgensis crown radius. Ecological Indicators, 2022, vol. 143, article 109322. DOI: 10.1016/j.ecolind.2022.109322.

60. Umeki K., Kikuzawa K. Patterns in individual growth, branch population dynamics, and growth and mortality of first-order branches of Betula platyphylla in northern Japan. Annals of Forest Science, 2000, vol. 57, pp. 587–598. DOI: 10.1051/forest:2000144.

61. Usoltsev V.A. Interrelation of some taxation elements of the crown and stem of the Betula pubescens in Northern Kazakhstan. Bulletin of Agricultural Science of Kazakhstan, 1971, No. 2, pp. 80–84. (In Russ.)

62. Usoltsev V.A. Phytomass of model trees of forest-forming species of Eurasia: database, climatically determined geography, taxation standards. Yekaterinburg; Ural State Forest Engineering University, 2016. 336 p. URL: http://elar.usfeu.ru/handle/123456789/5696. (In Russ.)

63. Usoltsev V.A. Single-tree biomass data for remote sensing and ground measuring of Eurasian forests: digital version. The third edition, enlarged. Yekaterinburg; Botanical Garden of Ural Branch of RAS, 2023 (CD-ROM). URL: https://elar.usfeu.ru/handle/123456789/12451. (In Russ.)

64. Usoltsev V.A., Tsepordey I.S., Noritsin D.V. Allometric models of single-tree biomass for forest-forming species of the Urals. Forests of Russia and economy in them, 2022, № 1, pp. 4–14. DOI: 10.51318/FRET.2022.85.72.001. (In Russ.)

65. Usoltsev V.A., Tsepordey I.S., Paramonov A.A., Tretyakov S.V., Koptev S.V., Karaban A.A., Tsvetkov I.V., Davydov A.V., Chasovskikh V.P. Comparative metaanalysis of allometric models of biomass of fast-growing hardwoods. Biosphere, 2023a, vol. 15(1), pp. 7–20. DOI: 10.24855/biosfera.v15i1.789. (In Russ.)

66. Usoltsev V.A., Tsepordey I.S., Chasovskikh V.P. Models for estimating biomass of forest-forming species by crown diameter as related to drone involving. Conifers of the boreal area, 2023b, vol. 41(4), pp. 300–305. DOI: 10.53374/1993-0135-2023-4-300-305. (In Russ.)

67. Usoltsev V.A., Tsepordey I.S. Crown morphology of forest-forming genera of Eurasia: allometry and ranking.Conifersof theboreal area, 2023c, vol.41, no.6. P.504–514. (In Russ.)

68. Uzoh F.C.C., Oliver W.W. Individual tree diameter increment model for managed even-aged stands of ponderosa pine throughout the western United States using a multilevel linear mixed effects model. Forest Ecology and Management, 2008, vol. 256, pp. 438–445. DOI: 10.1016/j.foreco.2005.09.012.

69. Wagner F.H., Ferreira M.P., Sanchez A., Hirye M.C.M., Zortea M., Gloor E., Phillips O.L., de Souza Filho C.R., Shimabukuro Y.E., Aragão L.E.O.C. Individual tree crown delineation in a highly diverse tropical forest using very high resolution satellite images. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, vol. 145, pp. 362–377. DOI: 10.1016/j.isprsjprs.2018.09.013.

70. Wang C.-S., Zeng J., Hein S., Zhao Z., Guo J.-J., Zeng J. Crown and branch attributes of mid-aged Betula alnoides plantations in response to planting density. Scandinavian Journal of Forest Research, 2017, vol. 32(8), pp. 679–687. DOI: 10.1080/02827581.2016.1261936.

71. Wang J., Jiang L., Yan Y. The impacts of climate, competition, and their interactions on crown width for three major species in Chinese boreal forests. Forest Ecology and Management, 2022, vol. 526(12), article 120597. DOI: 10.1016/j.foreco.2022.120597.

72. West G.B., Brown J.H., Enquist B.J. A general model for the origin of allometric scaling laws in biology. Science, 1997, vol. 276, pp. 122–126. DOI: 10.1126/science.276.5309.122.

73. West G.B., Brown J.H., Enquist B.J. A general model for the structure and allometry of plant vascular system. Nature, 1999, vol. 400, pp. 664–667. DOI: 10.1038/23251.

74. Westfall J.A., Nowak D.J., Henning J.G., Lister T.W., Edgar C.B., Majewsky M.A., Sonti N.F. Crown width models for woody plant species growing in urban areas of the U.S. Urban Ecosystems, 2020, vol. 23, pp. 905–917. DOI: 10.1007/s11252-020-00988-2.

75. Whitfield J. All creatures great and small. Nature, 2001, vol. 413, pp. 342–344. DOI: 10.1038/35096683.

76. Zagreev V.V. Generic yield tables of normal pine stands. Modern forest management and forest taxation : collection of scientific works. M.: VNIILM, 1974, iss. 4, pp. 61–107. (In Russ.)

77. Zarnoch S.J., Bechtold W.A., Stolte K.W. Using crown condition variables as indicators of forest health. Canadian Journal of Forest Research, 2004, vol. 34, pp. 1057–1070. DOI: 10.1139/x03-277.


Review

For citations:


Usoltsev V.A., Tsepordey I.S., Plyukha N.I. Interrelations of stem and crown diameters of forest-forming species of Eurasia. Izvestia Sankt-Peterburgskoj lesotehniceskoj akademii. 2024;(250):176-199. (In Russ.) https://doi.org/10.21266/2079-4304.2024.250.176-199

Views: 71


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-4304 (Print)
ISSN 2658-5871 (Online)