Features of the effect of the saproxylic insect complex in the process of mycogenic xylolysis of dead wood and woodpiles from spruce and pine
https://doi.org/10.21266/2079-4304.2025.254.185-211
Abstract
The process of wood xylolysis is especially important at the sites of sanitary and health measures. We believe that the utilization of felling residues, dead wood, and woodpiles by nature-like methods is largely related to the activity of associative organisms – xylotrophic macromycetes and invertebrates. The studies were conducted in 2015–2024 in illiquid wood harvesting sites on 1,270 model woodpiles and 332 model trees of European spruce and Scots pine. Total of 5,166 wood samples and 4,479 saproxylus individuals were studied. The functional effect of a number of families of saproxylic insects is to accelerate the mechanical destruction of wood. In the course of research, it was found that in the early stages representatives of the subfamily Scolytinae, the family Buprestidae and the genus Pissodes dominate, then insects from the families Siricidae and Cerambycidae join them. The re-moistened wood is used by representatives of the Anobiidae and Cerambycidae families of the Hylotrupini and Callidiini tribes. As a result, it was possible to identify the indicator species of saproxylic insects by the preservation of larval galleries by stages of xylolysis. The preservation of larval galleries in stages IV-VI depends on the intensity of rot development and the position of the trunk and is identified by preserved fragments and flight holes. Mathematical analysis data showed a significant direct relationship between trunk perforation by larval galleries of saproxylic insects of the genus Anthaxia, Phaenops, Acanthocinus, Callidium, Rhagium, Tetropium, Trypodendron and mycelium growth of xylotrophic macromycetes of the genus Fomitopsis, Rhodofomes, Trichaptum, Gloeophyllum (r = 0.7–0.96, P ≤ 0.05), as well as between Trypodendron, Anobium, Chalcophora, Tetropium, Arhopalus, Hylotrupes, Monochamus, Spondylis, Sirex, Urocerus and Coniophora, Neoantrodia, Pycnoporellus, Skeletocutis, Antrodia, Fuscopostia, Incrustoporia, Rigidoporus (r = 0.7–0.99, P ≤ 0.05). Our long-term data confirm the interaction of the type of zoochory between insects and fungi in the process of destruction of coniferous wood at the site of their death. Under the changed conditions, no saproxylic insect settlement was detected on the woodpiles. The results obtained are of great practical importance for the nature-like controlled and directed development of wood humification processes at sites of sanitary and health measures, while preserving biodiversity in detritus (decomposition chains) food chains and increasing the stability of natural ecosystems.
Keywords
About the Authors
S. E. NekliaevRussian Federation
Svyatoslav E. Nekliaev, PhD (Agriculture), Head of the Laboratory
Department of Pathology of Ornamental and Garden Crops; Laboratory of the Diagnosis of Harmful Organisms; Center for Priority Biotechnologies in Forest Protection; Forest Protection Department; Laboratory of Forest Phytopathology and Wood Protection
143050; Institute str. 5; Moscow region; Odintsovo district; Bolshye Vyazemy; 141202; Institutskaya str. 15; Moscow region; Pushkino
AuthorID: 394048
G. E. Larina
Russian Federation
Galina E. Larina, DSc (Biological), Professor, Head of the Laboratory
Laboratory of Experimental Research Methods
143050; Institute str. 5; Moscow region; Odintsovo district; Bolshye Vyazemy
AuthorID: 157983. WoS ResearcherID: A-9131-2017. Scopus AuthorID: 8697257900
References
1. Blagoveshchenskaya E.Yu. Mikologicheskie issledovaniya: Osnovy laboratornoj tekhniki. Moscow: LENAND, 2021. 90 p. (In Russ.)
2. Boddy L., Frankland J., Van West P. Ecology of Saprotrophic Basidiomycetes. Oxford: Elsevier, 2007. 386 p.
3. Bondartseva M.A., Parmasto E.H. Opredelitel' gribov SSSR: Poryadok afilloforovye. Vyp. 1. Leningrad: Nauka, 1986. 192 p. (In Russ.)
4. Bondartseva M.A. Opredelitel' gribov Rossii. Poryadok afilloforovye. Iss. 2. St. Petersburg: Nauka, 1998. 391 p. (In Russ.)
5. Davydkina T.A. Stereumovye griby Sovetskogo Soyuza. Leningrad: Nauka, 1980. 143 p. (In Russ.)
6. Denisova N.B., Nikitin V.F. Vidovoj sostav i dinamika razvitiya zhestkokrylyh-ksilobiontov Yaltinskogo gorno-lesnogo prirodnogo zapovednika. Vestnik KrasGAU. Biologicheskie nauki, 2018, no. 1, pp. 164–168. (In Russ.)
7. Edible and Medicinal Mushrooms Technology and Applications / ed. by D.C. Zied, A. Pardo-Giménez. Oxford: John Wiley & Sons Ltd, 2017. 586 p.
8. Ehnström B., Axelsson R. Insektsgnag I Bark Och Ved. Uppsala: SLU Artdatabanken, 2002. 512 p.
9. Filipiak M. Nutrient Dynamics in Decomposing Dead Wood in the Context of Wood Eater Requirements: The Ecological Stoichiometry of Saproxylophagous Insects. Saproxylic Insects, 2018, pp. 429–469.
10. Gupta V.K., Tuohy M.G. Laboratory Protocols in Fungal Biology Current Methods in Fungal Biology. London: Springer Science+Business Media, LLC, 2013. 606 p.
11. Ivojlov A.V., Bol'shakov S.Yu., Silaeva T.B. Izuchenie vidovogo raznoobraziya makromicetov. Saransk: Izd-vo Mordov. Un-ta, 2017. 160 p. (In Russ.)
12. Izhevskij S.S., Nikitskij N.B., Volkov O.G., Dolgin M.M. Illyustrirovannyj spravochnik zhukov-ksilofagov – vreditelej lesa i lesomaterialov Rossijskoj Federacii. Tula: Grif i K, 2005. 220 p. (In Russ.)
13. Jacobsen R.M., Kauserud H., Sverdrup-Thygeson A., Bjorbækmo M.M., Birkemoe T. Wood-inhabiting insects can function as targeted vectors for decomposer fungi. Fungal Ecol., 2017, vol. 29, pp. 76–84.
14. Krasuckij B.V. Kratkij atlas nekotoryh ksilofil'nyh gribov Chelyabinskoj oblasti. Chelyabinsk: Izd-vo ChelGU, 2021. 192 p. (In Russ.)
15. Lunde L.F., Boddy L., Sverdrup-Thygeson A., Jacobsen R.M., Kauserud H., Birkemoe T. Beetles provide directed dispersal of viable spores of a keystone wood decay fungus. Fungal ecology, 2023, vol. 63(2023), pp. 101–232. DOI: 10.1016/j.funeco.2023.101232.
16. Metody monitoringa vreditelej i boleznej lesa / pod red. V. K. Tuzova. Moscow: VNIILM, 2004. 200 p. (In Russ.)
17. Mozolevskaya E.G., Kataev O.A., Sokolova E.S. Metody lesopatologicheskogo obsledovaniya ochagov stvolovyx vreditelej i boleznej lesa. Moscow: Lesnaya promyshlennost`, 1984. 152 p. (In Russ.)
18. Neklyaev S.E., Larina G.E., Seraya L.G. Sukcessionnye izmeneniya afilloforovyh makromicetov na raznyh etapah ksiloliza hvojnyh porod. Agrarnaya nauka, 2024, no. 387(10), pp. 145–153. DOI: 10.32634/0869-8155-2024-387-10-145-153. (In Russ.)
19. Niemelä T. Suomen käävät – The polypores of Finland. Norrlinia, 2016, vol. 31, pp. 1–430.
20. Nikitskij N.B., Izhevskij S.S. Zhuki-ksilofagi – vrediteli drevesnyh rastenij Rossii. Moscow: Lesnaya promyshlennost’, 2005. 120 p. (In Russ.)
21. Rodrigues A., Johnson A.J., Joseph R.A., Li Y., Keyhani N.O., Stanley E.L., Weiss B., Kaltenpoth M., Smith M.E., Hulcr J. Fungal symbiont community and absence of detectable mycangia in invasive Euplatypus ambrosia beetles. Symbiosis, 2023, vol. 90, pp. 305–319. DOI:10.1007/s13199-023-00938-4.
22. Ryvarden L., Gilbertson R.L. European polypores. Part 1. Abortiporus–Lindtneria. Synopsis Fungorum, 1993, vol. 6, pp. 1–387.
23. Ryvarden L., Gilbertson R.L. European polypores. Part 2. Meripilus–Tyromyces. Synopsis Fungorum, 1994, vol. 7, pp. 388–743.
24. Seibold S., Müller J., Baldrian P., Cadotte M.W., Štursova M., Biedermann P.H., Krah F.–S. C. Bässler Fungi associated with beetles dispersing from dead wood – Let’s take the beetle bus! Fungal Ecol., 2019, vol. 39, pp. 100–108.
25. Shorohova E.V., Kapitsa E.A. Puti i skorost' biogennogo ksiloliza v taezhnyh lesah. Teoreticheskie i prikladnye aspekty lesnogo pochvovedeniya : sb. mater. VII Vseros. nauch. konf. po lesnomu pochvovedeniyu s mezhd. uch. Petrozavodsk, 2017, pp. 118–121. (In Russ.)
26. Skelton J., Jusino M.A., Carlson P.S., Smith K., Banik M.T., Lindner D.L., Palmer J.M., Hulcr J. Relationships among wood-boring beetles, fungi, and the decomposition of forest biomass. Molecular Ecology, 2019, vol. 28(22), pp. 1–16. DOI: 10.1111/mec.15263.
27. Stokland J.N., Siitonen J., Jonsson B. G. Biodiversity in dead wood. Cambridge, UK: University Printing House, 2012. 449 p. DOI: 10.1017/CBO9781139025843.
28. Storozhenko V.G., Krutov V.I., Ruokolajnen A.V., Kotkova V.M., Bondartseva M.A. Atlas-opredelitel' derevorazrushayushchih gribov Russkoj ravniny. Moscow: KMK, 2014. 198 p. (In Russ.)
29. Ulyshen M.D. Saproxylic Insects. Diversity, Ecology and Conservation. Hamburg: Springer, 2018. 904 p.
30. Usol’tsev V.A., Tsepordey I.S. Prostranstvenno-vremennoe zameshchenie v ekologii i problema adaptatsii rasteniy v usloviyakh izmeneniya klimata. Lesa Rossii i khozyaystvo v nikh, 2021, no. 4, pp. 4–39. DOI: 10.51318/FRET.2021.55.23.001. (In Russ.)
31. Valacich J.S., George J.F. Modern Systems Analysis and Design. Harlow, UK: Pearson, 2021. 528 p.
32. Vega F.E., Blackwell M. Insect-Fungal Association. Ecology and Evolution. New York: Oxford University Press, 2005. 310 p.
33. Zabel R.A., Morrell J.J., Robinson S. Wood Microbiology. Decay and Its Prevention. London: ELSEVIER Academicals Press, 2020. 556 p.
34. Zmitrovich I.V. Opredelitel' gribov Rossii. Poryadok afilloforovye. Vyp. 3. Semejstva atelievye i amilokorticievye. Moscow; St. Petersburg: Tov-vo nauch. izdanij KMK, 2008. 278 p. (In Russ.)
Review
For citations:
Nekliaev S.E., Larina G.E. Features of the effect of the saproxylic insect complex in the process of mycogenic xylolysis of dead wood and woodpiles from spruce and pine. Izvestia Sankt-Peterburgskoj lesotehniceskoj akademii. 2025;1(254):185-211. (In Russ.) https://doi.org/10.21266/2079-4304.2025.254.185-211