Preview

Izvestia Sankt-Peterburgskoj lesotehniceskoj akademii

Advanced search

Recognition of tree species based on image analysis

https://doi.org/10.21266/2079-4304.2025.255.262-276

Abstract

The article presents a method for the automatic recognition of tree species based on the analysis of tree trunk images captured using unmanned aerial vehicles (UAVs). The authors employ convolutional neural networks (CNNs) to classify seven tree species: birch, spruce, pine, aspen, maple, oak, and larch. The study aims to overcome the limitations of traditional identification methods, such as subjective expert assessment and high labor intensity. The methodology includes data collection and preprocessing, image augmentation to increase variability, and model training using ResNet, EfficientNet, and MobileNet architectures. The results demonstrate the model’s high efficiency, with an average classification accuracy exceeding 90%. The best performance was achieved for oak (97,6%) and birch (95,4%), while visually similar species (spruce and pine) showed lower accuracy (around 85%), indicating the need for further optimization. An analysis of external factors revealed the significant impact of shooting angle and lighting conditions on classification accuracy. The proposed method can be applied in forestry for automated monitoring and resource management. To enhance performance, the authors recommend expanding the dataset, incorporating additional environmental parameters, and conducting cross-validation on independent datasets.

About the Authors

I. K. Govyadin
St.Petersburg State Forest Technical University
Russian Federation

Govyadin Ilya K. – PhD (Technical)

194021, Institute per. 5. Let. U. St. Petersburg

Researcher ID: AAF-5782-2019



A. N. Chubinsky
St.Petersburg State Forest Technical University
Russian Federation

Chubinsky Anatoly N. – DSc (Technical), Professor

194021, Institute per. 5. Let. U. St. Petersburg

Researcher ID: I-9432-2016



References

1. Armi L., Abbasi E. Tree Bark Classification using Color-improved Local Quinary Pattern and Stacked MEETG. Journal of Artificial Intelligence and Data Mining (JAIDM), 2023, vol. 11, no. 3, pp. 391–405. DOI: 10.22044/jadm.2023.12692.2420.

2. Carpentier M., Giguère P., Gaudreault J. Tree Species Identification from Bark Images Using Convolutional Neural Networks. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2018. DOI: 10.48550/arXiv.1803.00949.

3. Govyadin I.K. Innovative approaches to collecting data on the heights and diameters of trees in plantations. Prospects for the development of the forestry complex: collection of scientific papers of the int. sci.-pract. conf. Bryansk, 2023, рр. 179–182. (In Russ.)

4. Govyadin I.K., Karimov B.M., Sheremet V.A. Data visualization system. Certificate of state registration of a computer program No. 2023612089 Russian Federation: No. 2022668020; decl. 09/30/2022; publ. 01/30/2023. (In Russ.)

5. Govyadin I.K., Chubinsky A.N., Alekseev A.S. Method for measuring tree diameters based on artificial intelligence technologies. Izvestia Sankt-Peterburgskoj Lesotehniceskoj Akademii, 2024, iss. 249, pp. 177–194. DOI: 10.21266/2079-4304.2024.249.177-194. (In Russ.)

6. Karimov B.M., Govyadin I.K. Artificial intelligence in the forestry industry: opportunities and prospects // Modern management trends and digital economy: from regional development to global economic growth: collection of articles from the V Int. sci.-pract. conf. Ekaterinburg, 2023, pp. 334–338.

7. Kim T.K., Hong J., Ryu D., Kim S., Byeon S.Y., Huh W., Kim K., Baek G.H., Kim H.S. Identifying and extracting bark key features of 42 tree species using convolutional neural networks and class activation mapping. Scientific Reports, 2022, vol. 12, art. no. 4772. DOI: 10.1038/s41598-022-08571-9.

8. Kim J.-H., Purusatama B.D., Savero A., Prasetia D., Jang J., Park S.-Y., Lee S., Kim N. Convolutional neural network performance and the factors affecting performance for classification of seven Quercus species using sclereid characteristics in the bark. BioResources, 2023, vol. 19, pp. 510–524. DOI: 10.15376/biores.19.1.510-524.

9. Kottilapurath Surendran G., Deekshitha, Lukac M., Výbošťok J., Mokros M. A forestry investigation: Exploring factors behind improved tree species classification using bark images. Ecological Informatics, 2024, vol. 85, iss. 1, art. no. 102932. DOI: 10.1016/j.ecoinf.2024.102932.

10. Miao S., Zhang K., Zeng H., Liu J. AI-Based Tree Species Classification Using Pseudo Tree Crown Derived From UAV Imagery (preprint). 2024. DOI: 10.20944/preprints202402.0786.v1.

11. Onishi M., Ise T. Explainable identification and mapping of trees using UAV RGB image and deep learning. Scientific Reports, 2021, vol. 11, art. no. 903. DOI: 10.1038/s41598-020-79653-9.

12. Ovsyannikov A.V. Methodology for classification of boreal forest tree species using the Efficientnet artificial intelligence architecture. Journal of Agriculture and Environment, 2024, no. 5 (45). DOI: 10.60797/JAE.2024.45.8. (In Russ.)

13. Pradipkumar V.H., Alagu Raja R.A. Automatic Identification of Tree Species from UAV Images Using Machine Learning Approaches. Journal of the Indian Society of Remote Sensing, 2022, vol. 50, pp. 2447-2464. DOI: 10.1007/s12524-022-01608-6.

14. Voitov D.Yu., Vasilyev S.B., Kormilitsyn D.V. Development of technology for determining tree species using computer vision. Forestry Bulletin, 2023, vol. 27, no. 1, pp. 60–66. DOI: 10.18698/2542-1468-2023-1-60-66. (In Russ.)


Review

For citations:


Govyadin I.K., Chubinsky A.N. Recognition of tree species based on image analysis. Izvestia Sankt-Peterburgskoj lesotehniceskoj akademii. 2025;(255):262-276. (In Russ.) https://doi.org/10.21266/2079-4304.2025.255.262-276

Views: 39


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-4304 (Print)
ISSN 2658-5871 (Online)