Preview

Izvestia Sankt-Peterburgskoj lesotehniceskoj akademii

Advanced search

Improving the operation of forestry machines under the conditions of digital technologies implementation

https://doi.org/10.21266/2079-4304.2025.255.320-335

Abstract

The widespread introduction of digital technologies into human economic activities, including logging, is an actual development trend. When organizing the work of logging machines, it is necessary to take into account not only their technical characteristics, but also their ability to adapt to a single digital space. A review of domestic and foreign scientific and technical sources has shown that much attention is paid to the issues of improving the logging process, many researchers consider the digitalization of logging machine operation as one of the main activities. The development of artificial intelligence systems implies the creation of a set of logging machines that work autonomously, without human participation, both in timber harvesting and its removal. However, at the current stage of development, it is impossible to do without human participation, therefore, the considered solutions are aimed at improving the efficiency of the harvester operator, reducing his fatigue by automating some of the work performed, in particular, the introduction of machine vision, which allows automatic control of the safety of the logging process, presence in dangerous areas, determine the species of wood with the use of neural networks to reduce the mental load on the operator. An important aspect of improving the efficiency of logging is work planning with the use of an information system, which takes into account both the results of machine operation (diameter and number of assortments, their volume, species) and controls the technical condition of machines and technological equipment. The algorithm of the information system functioning should include specialized software that allows modeling and on its basis planning of operation modes of logging machines and equipment taking into account their technical condition and natural-production operating conditions. Solutions to transfer the necessary information to the company's server to take into account the peculiarities of logging machines operation due to the remoteness of harvesting areas from the cellular network coverage area are proposed in the paper.

About the Authors

V. V. Sivakov
Bryansk State Engineering-technological University
Russian Federation

Sivakov Vladimir V. – PhD (Technical), Associate Professor of the Department of Transport and Technological Machines and Service

241037, Stanke Dimitrov av. 3. Bryansk



A. N. Zaikin
Bryansk State Engineering-technological University
Russian Federation

Zaikin Anatoly N. – DSc (Technical), Professor of the Department of Transport and Technological Machines and Service

241037, Stanke Dimitrov av. 3. Bryansk



References

1. Bacescu N., Piol O., Talbot B., Marchi L., Grigolato S. Modelling skidding extraction in mountainous forest though engine data acquisition and analysis (preprint). 2024. DOI: 10.21203/rs.3.rs-4613216/v1.

2. Ehrlich-Sommer F., Hoenigsberger F., Gollob C., Nothdurft A., Stampfer K., Holzinger A. Sensors for Digital Transformation in Smart Forestry. Sensors, 2024, vol. 24, art. no. 798. DOI:.org/10.3390/s24030798.

3. Gavrilović N., Mishra A. Software architecture of the internet of things (IoT) for smart city, healthcare and agriculture: analysis and improvement directions. J. Ambient Intell Human Comput., 2021, no. 12, pp. 1315–1336. DOI: 10.1007/s12652-020-02197-3.

4. Govyadin I.K., Chubinsky A.N., Alekseev A.S. Method for measuring tree diameters based on artificial intelligence technologies. Izvestia Sankt-Peterburgskoj Lesotehniceskoj Akademii, 2024, iss. 249, pp. 177–194. DOI: 10.21266/2079-4304.2024.249.177-194. (In Russ.)

5. Guerra F., Udali A., Wagner T., Marinello F., Grigolato S. Opportunity to integrate machine management data, soil, terrain and climatic variables to estimate tree harvester and forwarder performance. Annals of Forest Research, 2024, vol. 67, no. 1. DOI: 10.15287/afr.2024.3338.

6. Hernandez-Matias J., Ríos J., Clavijo M., Villaverde S.J., Idoipe A. Methodology and architecture for the implementation of TPM 4.0 in small and medium-sized companies. Dyna (Bilbao), 2023, vol. 98, pp. 351–355. DOI: 10.6036/10878.

7. Kärhä K., Poikela A., Palander T. Productivity and Costs of Harwarder Systems in Industrial Roundwood Thinning. Croatian Journal of Forest Engineering, 2018, vol. 39, pp. 23–33.

8. Kim Gyun-Hyung, Kim Ki-Duck, Lee Hyeon-Seung, Choi Yunsung, Mun Ho- Seong, Oh Jae-Heun, Shin Beom-Soo. Development of Wi-Fi-Based Teleoperation System for Forest Harvester. Journal of Biosystems Engineering, 2021, vol. 46, pp. 206–216. DOI: 10.1007/s42853-021-00100-2.

9. Kolberg D., Zühlke D. Lean Automation enabled by Industry 4.0 Technologies. IFAC-Papers On Line, 2015, vol. 48, iss. 3, pp. 1870–1875. DOI: 10.1016/j.ifacol.2015.06.359.

10. Labelle E., Kemmerer J. Business Process Reengineering of a Large-Scale Public Forest Enterprise Through Harvester Data Integration. Croatian journal of forest engineering, 2022, vol. 43. DOI: 10.5552/crojfe.2022.1129.

11. Lundbäck M., Häggström C., Fjeld D., Lindroos O., Nordfjell T. The economic potential of semi-automated tele-extraction of roundwood in Sweden. International Journal of Forest Engineering, 2022, vol. 33, pp. 1–18. DOI: 10.1080/14942119.2022.2103784.

12. Lundbäck M., Lindroos O., Servin M. Rubber-Tracked Forwarders–Productivity and Cost Efficiency Potentials. Forests, 2024, vol. 15, art. no. 284. DOI: 10.3390/f15020284.

13. Lundqvist R., Rönnqvist M., Flisberg P., Jönsson P., Lindroos O. Country-wide analysis of the potential use of harwarders for final fellings in Sweden. Scandinavian Journal of Forest Research, 2023, vol. 38, pp. 1–16. DOI: 10.1080/02827581.2023.2168045.

14. Lundqvist R., Rönnqvist M., Flisberg P., Jönsson P., Lindroos O. Comparison of modeling approaches for evaluation of machine fleets in central Sweden forest operations. International Journal of Forest Engineering, 2022, vol. 34, pp. 1-12. DOI: 10.1080/14942119.2022.2102346.

15. Proto A., Sperandio G., Costa C., Maesano M., Antonucci F., Macri G., Mugnozza G., Zimbalatti G. A Three-Step Neural Network Artificial Intelligence Modeling Approach for Time, Productivity and Costs Prediction: A Case Study in Italian Forestry. Croatian journal of forest engineering, 2020, vol. 41, iss. 1. DOI: 10.5552/crojfe.2020.611.

16. Rukomojnikov K., Sergeeva T. Simulation modeling of logging harvester movements during selective logging. Journal of Applied Engineering Science, 2024, vol. 22, pp. 1-8. DOI: 10.5937/jaes0-50146.

17. Sergeeva T., Gilyazova T., Rukomojnikov K., Tsarev E., Petuhov I., Anisimov P. Modeling of labor costs during the operation of a forest harvester. Agrarian Scientific Journal, 2024, vol. 4, pp. 128-135. DOI: 10.28983/asj.y2024i4pp128-135.

18. Sforza F., Starke M., Dietsch P., Thuer P., Lingua E., Ziesak M. Maximizing the economic benefit for cable yarding timber harvesting operations by spatially optimizing tree selection. European Journal of Forest Research, 2024, vol. 144, pp. 831-850. DOI: 10.1007/s10342-024-01700-1.

19. Silva A., Cardoso M., Gomes R., Schettini B. Minette L., Nunes Í., Villanova P. Forest extraction management with the indicator of overall efficiency of forest machines (OEFM). Revista Árvore, 2022, vol. 46, iss. 6. DOI: 10.1590/1806- 908820220000018.

20. Sivakov V.V. Digitalisation of the management system of maintenance and repair of forestry machines. Coniferous trees of the boreal zone, 2024, vol. 42, no. 1, pp. 64– 71. DOI: 10.53374/1993-0135-2024-1-64-71. (In Russ.)

21. Sivakov V.V., Zaikin A.N., Novikova T.P., Zelikov V.A., Stasyuk V.V., Chuikov A.S. Digitalization of the workflow management system of logging machines: efficiency assessment using the example of «Ponsse», «Komatsu», and «John Deere». Lesotekhnicheskii zhurnal [Forestry Engineering journal], 2023, vol. 13, no. 3 (51), pp. 200-218. DOI: 10.34220/issn.2222-7962/2023.3/14. (In Russ.)

22. Sivakov V.V., Zaikin A.N. Increasing the effectiveness of training employees of forestry enterprises in the conditions of digitization. Izvestia Sankt-Peterburgskoj Lesotehniceskoj Akademii, 2024, iss. 248, pp. 243–256. DOI: 10.21266/2079-4304.2024.248.243-256. (In Russ.)

23. Sivakov V., Buglaev A., Zaikin A., Orekhovskaya A., Nurullin A., Razetdinov I. Improving the training of employees of logging enterprises in the field of labor protection. EDP Sciences – Web of Conferences, 2024a, vol. 486, art. no. 04007. DOI: 10.1051/e3sconf/202448604007.

24. Sivakov V., Zaikin A., Borovaya K., Andronov A., Akhmadiev A., Sakhapov R. Improving service agricultural and forestry machinery. BIO WEB OF CONFERENCES. IV International Conference on Agricultural Engineering and Green Infrastructure for Sustainable Development (AEGISD-IV 2024). Les Ulis, 2024b, art. no. 01005.

25. Sperandio G., Ortenzi L., Spinelli R., Magagnotti N., Figorilli S., Acampora A., Costa C. A multi-step modelling approach to evaluate the fuel consumption, emissions, and costs in forest operations. European Journal of Forest Research, 2023, vol. 143, pp. 1-15. DOI: 10.1007/s10342-023-01624-2.

26. Spinelli R., Magagnotti N., Picchi G. Deploying Mechanized Cut-to-Length Technology in Italy: Fleet Size, Annual Usage, and Costs. International Journal of Forest Engineering, 2010, vol. 21, pp. 23-31. DOI: 10.1080/14942119.2010.10702595.

27. Svoikin F., Zhuk K., Svoikin V., Ugryumov S., Bacherikov I. Stem segmentation for sustainable forest management task. E3s web of conferences, 2023a, vol. 390, art. no. 07038. DOI: 10.1051/e3sconf/202339007038.

28. Svoikin F., Zhuk K., Svoikin V., Ugryumov S., Bacherikov I., Daniela V., Ryapukhin A. Classification of Tree Species in the Process of Timber-Harvesting Operations Using Machine-Learning Methods. Inventions, 2023b, vol. 8, no. 2, art. no. 57. DOI: 10.3390/inventions8020057.

29. Szewczyk G., Spinelli R., Magagnotti N., Tylek P., Sowa J., Rudy P., Gaj- Gielarowiec D. The mental workload of harvester operators working in steep terrain conditions. Silva Fennica, 2020, vol. 54, iss. 3, art. no. 10355. DOI: 10.14214/sf.10355.

30. Thaker R. Advancements in Forestry Robotics: Autonomous Navigation, Sensing, and AI-Driven Applications for Precision Forestry and Forest Inventory Management. International Journal of Innovative Research and Creative Technology, 2024, vol. 10, iss. 4, pp. 1–7. DOI: 10.5281/zenodo.14001694.

31. Zaikin A.N., Sivakov V.V., Novikova T.P., Zelikov V.A., Stasyuk V.V., Chuikov A.S. Software for managing the system of maintenance and repair of forest machines: assessment of applicability. Lesotekhnicheskii zhurnal [Forestry Engineering journal], 2023, vol. 13, no. 2 (50), pp. 105–127. DOI: 10.34220/issn.2222-7962/2023.2/6. (In Russ.)

32. Zaikin A.N., Sivakov V.V., Zelikov V.A., Chuikov A.S., Novikov A.I., Stasyuk V.V. Automatized management of logging operations: a methodological analysis. Lesotekhnicheskii zhurnal [Forest Engineering journal], 2024, vol. 14, no. 2 (54), pp. 204–226. DOI: 10.34220/issn.2222-7962/2024.2/12. (In Russ.)

33. Zhuk K.D., Ugryumov S.A., Svoikin F.V. Statistical evaluation of the dimensional characteristics of timber products using data from stm-files of multioperation forest machines. Izvestia Sankt-Peterburgskoj Lesotehniceskoj Akademii, 2021, iss. 235, pp. 137–149. DOI: 10.21266/2079-4304.2021.235.137-149. (In Russ.)

34. Zhuk K.D., Ugryumov S.A., Svoykin F.V. Classification of tree species in the process of logging using machine learning methods. Izvestia Sankt-Peterburgskoj Lesotehniceskoj Akademii, 2023, iss. 242, pp. 167–178. DOI: 10.21266/2079-4304.2023.242.167-178. (In Russ.)


Review

For citations:


Sivakov V.V., Zaikin A.N. Improving the operation of forestry machines under the conditions of digital technologies implementation. Izvestia Sankt-Peterburgskoj lesotehniceskoj akademii. 2025;(255):320-335. (In Russ.) https://doi.org/10.21266/2079-4304.2025.255.320-335

Views: 39


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-4304 (Print)
ISSN 2658-5871 (Online)