The influence of polymorphism and dispersity of zirconium dioxide on solubility in acidic and alkaline media
https://doi.org/10.21266/2079-4304.2025.255.458-472
Abstract
The thermodynamic characterization of the true solubility at 25°C of amorphous and crystalline nanoscale modifications of ZrO2 depending on the pH of the aqueous medium in the range of 0–14.7, taking into account the formation of mono- and polynuclear hydroxocomplexes of Zr(IV) and the dispersity of the solid phase, has been given for the first time. The average effective particle radius (r ≤ 25nm for αZrO2) should be taken into account as a thermodynamic parameter in determining the solubility of zirconium dioxide in the nanostate. The true solubility of polymorphic modifications of ZrO2 in aqueous slightly acidic and slightly alkaline media in the absence of fluoride and carbonate ions is very low (7×10–10 – 10–7 mol/L), decreases with calcination and is determined by strong neutral complexes Zr(OH)4, prevailing at pH 2-13. Solubility in aqueous media depends markedly on the crystal structure (α-ZrO2 < β-ZrO2 < γ–ZrO2), increases significantly with decreasing particle size of crystalline nanopowders and strongly (by about 4 orders of magnitude) in the transition from stable crystalline baddeleyite α-ZrO2 to dry amorphous modification. In strongly acidic medium (1 M HClO4) the solubility of crystalline modifications of ZrO2 is 3-4 orders of magnitude higher than in water and is determined mainly by the complex Zr(OH)3+, and for amorphous powder ZrO2 - by the complexes Zr4(OH)88+ (pH 0), Zr5(OH)128+ (pH 1) and Zr(OH)22+ (pH 2). The Zr(OH)3+complex makes a minor contribution to the solubility of ZrO2 at pH 0-2. Zr4+ aquacations determine the solubility of α- ZrO2 at pH<0. At pH=1–15 polynuclear Zr(IV) hydroxocomplexes have no appreciable effect on the solubility of macrocrystalline ZrO2 modifications. In strongly alkaline aqueous media (pH =13,5–14,7) the solubility of ZrO2 is 2-3 orders of magnitude higher than in water and is determined mainly by the complex Zr(OH)62–.
About the Author
E. V. Shkol`nikovRussian Federation
Shko’nikov Evgeny V. – DSc (Chemical), Professor
194021. Institute per. 5. St. Petersburg
Researcher ID: G-8108-2016.
Scopus Author ID: 7003735499
References
1. Brown P., Curti E., Grambow B., Ekberg C. Chemical thermodynamics of zirconium (Chemical Thermodynamics. Vol. 8). Amsterdam: Elsevier, 2005. 544 p.
2. Cho H.-R., Walther C., Rothe J., Neck V., Denecke M.A., Dardenne K., Fanghänel T. Combined LIBD and XAFS investigation of the formation and structure of Zr(IV) colloids. Analytical and Bioanalytical Chemistry, 2005, vol. 383, no. 1, pp. 28–40.
3. Curti E., Degueldre C. Solubility and hydrolysis of Zr oxides: a review and supplemental data. Radiochimica Acta, 2002, vol. 90, no. 9−11, pp. 801–804.
4. Ekberg C., Kalvenius G., Albinsson Y., Brown P. Studies on the hydrolytic behavior of zirconium(IV). Journal of Solution Chemistry, 2004, vol. 33, no. 1, pp. 47–79.
5. Kobayashi T., Sasaki T., Takagi I., Moriyama H. Solubility of zirconium (IV) hydrous oxides. Journal of Nuclear Science Technology, 2007, vol. 44, no. 1, pp. 90–94.
6. Kobayashi T., Uemura T., Sasaki T., Takagi I., Moriyama H. The solubilities and solubility products of zirconium hydroxide and oxide after aging at 278, 313, and 333 K. Radiochimica Acta, 2016, vol. 104, no. 3, pp. 183–193.
7. Luo X., Zhou W., Ushakov S.V., Navrotsky A., Demkov A.A. Monoclinic to tetragonal transformations in hafnia and zirconia: A combined calorimetric and density functional study. Physical review. B. Condensed matter, 2009, vol. 80, no. 13, art. no. 134119.
8. Nogami M. Crystal growth of tetragonal ZrO2 in the glass system ZrO2-SiO2 prepared by the sol-gel process from metal alkoxides. Journal of Materials Science, 1986, vol. 21, no. 10, pp. 3513–3516.
9. Pitcher M.W., Ushakov S.V., Navrotsky A., Woodfield B.F., Li G., Boerio-Goates Ju. Energy crossovers in nanocrystalline zirconia. Journal of American Ceramic Society, 2005, vol. 88, no. 1, pp. 160–167.
10. Qiu L., Guzonas D.A., Webb D.G. Zirconium dioxide solubility in high temperature aqueous solutions. Journal of Solution Chemistry, 2009, vol. 38, no. 7, pp. 857–867.
11. Shkol'nikov E.V. Thermodynamic calculation of the solubility of solid hydroxides of group IIIA elements in water and aqueous media. Russian Journal of Applied Chemistry, 2008, vol. 81, no. 9, pp. 1503–1507. (In Russ.)
12. Shkol'nikov E.V. Rastvorimost' i amfoternost' oksidov Cr2O3, Fe2O3 i ikh gidratov v vodnykh sredakh. Izvestiia Sankt-Peterburgskoi lesotekhnicheskoi akademii, 2014, iss. 206, pp. 154−162. (In Russ.)
13. Shkol'nikov E.V. Vliyanie polimorfizma i dispersnosti dioksida titana na rastvorimost` v kislykh i shchelocnykh sredakh. Izvestiia Sankt-Peterburgskoi lesotekhnicheskoi akademii, 2016, iss. 215, pp. 266−275. (In Russ.)
14. Thoenen T., Hummel W., Berner U.,Curti E. The PSI/Nagra Chemical Thermodynamic Database 12/07. Arbeisbericht NAB, 2014, no. 14–49, pp. 353–378.
15. Walther C., Rothe J., Fuss M.B., Büchner S., Koltsov S., Bergmann T. Investigation of polynuclear Zr(IV) hydroxide complexes by nanoelectrospray mass- spectrometry combined with XAFS. Analytical and Bioanalytical Chemistry, 2007, vol. 388, no. 2, pp. 409–431.
16. Xie S., Iglesia E., Bell A.T. Water-assisted tetragonal-to-monoclinic phase transformation of ZrO2 at low temperatures. Chemistry of Materials, 2000, vol. 12, no. 8, pp. 2442–2447.
Review
For citations:
Shkol`nikov E.V. The influence of polymorphism and dispersity of zirconium dioxide on solubility in acidic and alkaline media. Izvestia Sankt-Peterburgskoj lesotehniceskoj akademii. 2025;(255):458-472. (In Russ.) https://doi.org/10.21266/2079-4304.2025.255.458-472











