Preview

Izvestia Sankt-Peterburgskoj lesotehniceskoj akademii

Advanced search

Changes in the average height of aspen forests (genus Populus L.) in the climatic gradients of Eurasia

https://doi.org/10.21266/2079-4304.2023.245.159-174

Abstract

The world is experiencing rapid climate change, and forest growth rates in different climatic zones react differently to it. Understanding the driving forces of these different reactions is crucial for predicting forest dynamics under climate shifts. A common method of assessing forest productivity is the development of the dependence of the stand height upon the age, as well as the assessment of the site index characterized by the stand height at the base age. The dependence of the stand height upon the age began to be supplemented by the introduction of climatic variables into the model, in particular, temperature and precipitation. However, these models did not answer the question of how climate affects the productivity of stands, negatively or positively, but simply showed that the inclusion of climatic and other biophysical variables increases the adequacy of the model. The purpose of our study was (a) to develop a model of changes of average stand height in gradients of geographically distributed temperatures and precipitation on the territory of Eurasia using the materials of 256 sample plots with measured taxation indicators of stands of the genus Populus L. and (b) to show possible changes in average height due to hypothetical shifts in temperatures and precipitation. It has been established that in regions with sufficient moisture, the limiting factor for growth is the lack of heat, and in arid regions, the limiting factor changes, and excess heat becomes it. With an expected increase in January temperature by 1 C, the average height of stands in conditions of sufficient moisture can increase by 3–8%, and in conditions of insufficient moisture – decrease by 4–11%. Accordingly, in the case of a decrease in average annual precipitation by 20 mm in areas of lack of heat, the average height may increase by 2– 10%, and in regions of sufficient heat supply – decrease by 3–15%.

About the Authors

V. A. Usoltsev
Ural State Forest Engineering University; Botanical Garden, Ural Branch of the Russian Academy of Sciences
Russian Federation

SOLTSEV Vladimir A. – DSc (Agriculture), professor of the Department of Forestry; chief researcher

620100. Sibirskiy Trakt str. 37. Yekaterinburg



I. S. Tsepordey
Botanical Garden of Ural Branch of RAS
Russian Federation

TSEPORDEY Ivan S. – PhD (Agriculture), scientist

620144. 8 Marta str. 202a. Yekaterinburg



References

1. M., Schmidt M. Climate-sensitive modelling of site productivity relationships for Norway spruce (Picea abies (L.) Karst.). Forest Ecology and Management, 2010, vol. 259, pp. 739 –749.

2. Anuchin N.P. Forest taxation. Moscow; Leningrad: Goslesbumizdat, 1952. 532 p. (In Russ.).

3. Babst F., Poulter B., Trouet V., Tan K., Neuwirth B., Wilson R., Carrer M., Grabner M., Tegel W., Levanic T., Panayotov M., Urbinati C., Bouriaud O., Ciais P., Frank D. Site‐and species‐specific responses of forest growth to climate across the European continent. Global Ecology and Biogeography, 2013, vol. 22, pp. 706–717. DOI: 10.1111/geb.12023

4. Bravo-Oviedo A., Tomé M., Bravo F., Montero G., del Río M. Dominant height growth equations including site attributes in the generalized algebraic difference approach. Canadian Journal of Forest Research, 2008, vol. 38, pp. 2348–2358. DOI: 10.1139/X08-07

5. Doev S.K. On the productivity of spruce forests of Southern Primorye depending on the altitude above sea level. Forest taxation and forest management. Krasnoyarsk: SibTI, 1973, iss. 2, pp. 36–41. (In Russ.)

6. Duan A., Zhang J., Tong S., He C. Polymorphic dominant height and site index models for Chinese fir (Cunninghamia lanceolata) plantations in Southern China. Scientific Research and Essays, 2013, vol. 22(8), pp. 1010–1021. DOI: 10.5897/SRE12.565

7. Fiandino S., Plevich J., Tarico J., Utello M., Demaestri M., Gyenge J. Modeling forest site productivity using climate data and topographic imagery in Pinus elliottii plantations of central Argentina. Annals of Forest Science, 2020, vol. 77, Article 95. DOI: 10.1007/s13595-020-01006-3

8. Hamann A., Wang T. Potential effects of climate change on ecosystem and tree species distribution in British Columbia. Ecology, 2006, vol. 87(11), pp. 2773–2786. DOI: 10.1890/0012-9658(2006)87[2773:peocco]2.0.co;2

9. Hunter I.R., Gibson A.R. Predicting Pinus radiata site index from environmental variables. New Zealand Journal of Forestry Science, 1984, vol. 14, pp. 53–64.

10. Jucker T., Caspersen J., Chave J., Antin C., Barbier N., Bongers F., Dalponte M., van Ewijk K.Y., Forrester D.I., Heani M., Higgins S.I., Holdaway R.J., Iida Y., Lorimer C., Marshall P.M., Momo S., Moncrieff G.R., Ploton P., Poorter L., Rahman K.A., Schlund M., Sonké B., Sterck F.J., Trugman A.T., Usoltsev V.A., Vanderwel M.C., Waldner P., Wedeux B., Wirth C., Wöll H., Woods M., Xiang W., Zimmermann N., Coomes D.A. Allometric equations for integrating remote sensing imagery into forest monitoring programmes. Global Change Biology, 2017, vol. 23, pp. 177–190. DOI: 10.1111/gcb.13388.

11. Krylova I.L., Leskov N.D. The relationship between spruce growth and altitude above sea level in the Northern Urals. Collection of works on forestry. Sverdlovsk: Publishing House, 1959, iss. 5, pp. 91–96. (In Russ.)

12. Kuzmichev V.V. Patterns of stand growth. Novosibirsk: Nauka, 1977. 160 p. (In Russ.)

13. Liang P., Wang X., Sun H., Fan Y., Wu Y., Lin X., Chang J. Forest type and height are important in shaping the altitudinal change of radial growth response to climate change. Scientific Reports, 2019, vol. 9, Article 1336. DOI: 10.1038/s41598-018-37823-w

14. Lvov P.N., Ipatov L.F. Change of taxation indicators of stands of blueberry spruce in connection with the zonality of forests of the European North. Lesnoy Zhurnal, 1973, no. 6, pp. 14–17. (In Russ.)

15. Matisons R., Šņepsts G., Puriņa L., Donis J., Jansons Ā. Dominant height growth of European beech at the northeasternmost stands in Europe. Silva Fennica, 2018, vol. 52(1), Article id 7818. URL: https://doi.org/10.14214/sf.7818.

16. Maurin’s A.M., Liepa I.Ya., Drike A.Ya., Pospelova G.E., Prognozirovanie plodonosheniya drevesnykh rastenij (Forecasting of fruiting of woody plants). Optimizatsiya ispol’zovaniya i vosproizvodstva lesov SSSR (Optimization of use and reproduction of forests of the USSR). M.: Nauka, 1977, pp. 50–53. (In Russ.)

17. Monserud R.A., Yang Y., Huang S., Tchebakova N.M. Potential change in lodgepole pine site index and distribution under climate change in Alberta. Canadian Journal of Forest Research, 2008, vol. 38(2), pp. 343–352. DOI: 10.1139/X07-166

18. Ozcelik R., Cao Q.V., Trincado G., Göçer N. Predicting tree height from tree diameter and dominant height using mixed-effects and quantile regression models for two species in Turkey. Forest Ecology and Management, 2018, vol. 419, pp. 419–420. DOI: 10.1016/j.foreco.2018.03.051

19. Peschel W. Die mathematischen Methoden zur Herleitung der Wachstumgezetze von Baum und Bestand und die Ergebnisse ihrer Anwendung. Tharandter forstliches Jahrbuch. Berlin, 1938, pp. 169–348.

20. Prodan M. Forstliche Biometrie. München, Bonn, Wien, 1961. 432 p.

21. Ryan M.G., Phillips N., Bond B.J. The hydraulic limitation hypothesis revisited. Plant Cell and Environment, 2006, vol. 29(3), pp. 367–381. DOI: 10.1111/j.1365-3040.2005.01478.x

22. Ryan M.G., Yoder B.J. Hydraulic limits to tree height and tree growth. Bioscience, 1997, vol. 47(4), pp. 235–242. DOI: 10.2307/1313077

23. Sachs J. Lehrbuch der Botanik. 3 Aufl. Leipzig: W. Engelmann, 1873. 928 p.

24. Sharma M., Subedi N., Ter-Mikaelian M., Parton J. Modeling climatic effects on stand height / site index of plantation-grown jack pine and black spruce trees. Forest Science, 2015, vol. 61(1), pp. 25–34. DOI: 10.5849/forsci.13-190

25. Simard M., Pinto N., Fisher J.B., Baccini A. Mapping forest canopy height globally with space borne lidar. Journal of Geophysical Research, 2011, vol. 116, Article G04021. DOI: 10.1029/2011JG001708

26. Ung C.-H., Bernier P.Y., Raulier F., Fournier R.A., Lambert M.-C., Régnière J. Biophysical site indices for shade tolerant and intolerant boreal species. Forest Science, 2001, vol. 47(1), pp. 83–95. URL: https://www.researchgate.net/publication/45677176

27. Usoltsev V.A. Forest biomass and primary production database for Eurasia: digital version. The third edition, enlarged. Yekaterinburg: Ural State Forest Engineering University, 2020. URL: https://elar.usfeu.ru/bitstream/123456789/9648/1/Base_v2.xlsx

28. Usoltsev V.А., Merganičová K., Konôpka B., Osmirko A.A., Tsepordey I.S., Chasovskikh V.P. Fir (Abies spp.) stand biomass additive model for Eurasia sensitive to winter temperature and annual precipitation. Central European Forestry Journal, 2019, vol. 65, pp. 166–179. DOI: 10.2478/forj-2019-0017.

29. Usoltsev V.A., Tsepordey I.S. Space-for-time substitution in ecology and the problem of plant adaptation in the conditions of climate change. Forests of Russia and Their Management, 2021, iss. 4 (79), pp. 4–39. URL: https://elar.usfeu.ru/bitstream/123456789/11263/1/LR_4_2021-1.pdf (In Russ.)

30. Vanclay J.K. Modelling forest growth and yield: Applications to mixed tropical forests. CAB International, Oxon, UK, 1994. 312 p.

31. Wang Y., LeMay V., Baker T.G. Modelling and prediction of dominant height and site index of Eucalyptus globulus plantations using a nonlinear mixed-effects model approach. Canadian Journal of Forest Research, 2007, vol. 37, pp. 1390–1403. DOI: 10.1139/X06-282

32. Weiskittel A.R., Crookston N.L., Radtke P.J. Linking climate, gross primary productivity, and site index across forests of the western United States. Canadian Journal of Forest Research, 2011, vol. 41, pp. 1710 –1721.

33. Wolf J., Brocard G., Willenbring J., Porder S., Uriarte M. Abrupt change in forest height along a tropical elevation gradient detected using airborne lidar. Remote Sensing, 2016, vol. 8, Article 864. DOI: 10.3390/rs8100864

34. World Weather Maps, 2007. URL: https://www.mapsofworld.com/referrals/weather


Review

For citations:


Usoltsev V.A., Tsepordey I.S. Changes in the average height of aspen forests (genus Populus L.) in the climatic gradients of Eurasia. Izvestia Sankt-Peterburgskoj lesotehniceskoj akademii. 2023;(245):159-174. (In Russ.) https://doi.org/10.21266/2079-4304.2023.245.159-174

Views: 66


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-4304 (Print)
ISSN 2658-5871 (Online)