Preview

Izvestia Sankt-Peterburgskoj lesotehniceskoj akademii

Advanced search

Modeling the biological maturity age of pine and oak forest stands

https://doi.org/10.21266/2079-4304.2023.246.6-21

Abstract

The age of biological maturity is the age corresponding to the maximum value of the average annual growth of the forest stand. When the age of biological maturity is reached, the transition from the formation of a forest stand to its maturity takes place. At the same time, the maximum increase in the total biomass is observed and abundant fruiting begins. Empirical data on the current growth of pine and oak stands in terms of overall productivity were taken from A.Z. Shvidenko tables. As an analytical dependence of the biomass of forest stands on time, an ecophysiological model was used, which is explained from the point of view of non-equilibrium thermodynamics for open systems. Approximating the empirical values near the position of the maximum growth by a simple analytical dependence, we obtain the time at which the growth of the forest stand reaches its maximum value. On the other hand, the stand biomass is proportional to the growing stock with acceptable accuracy, especially in a fairly short period of time. In this case, the maximum increase can be determined by taking the second derivative of the function expressing the dependence of biomass on time and equating it to zero. Comparing the values obtained by these two alternative methods, one can judge the reliability of the results obtained and the quality of the tree-stand model used. The paper substantiates two alternative methods for determining the age of biological maturity of a forest stand. An important result for ecological and physiological modeling is the inclusion of the age of biological maturity in the FLR-model, since the maximum deviation of theoretical values from the corresponding empirical values is observed at small ages. In the future, it is planned to thermodynamically substantiate (or refute) the need to implement the process of ecological and physiological modeling of a stand starting from the age of biological maturity. There is reason to assume that the age of biological maturity determines the age from which it is possible to consider a dry ecological system.

About the Authors

V. I. Lisitsyn
Voronezh State University of Forestry and Technologies named after G.F. Morozov
Russian Federation

LISITSYN Victor I. – PhD (Physical and Mathematical), Professor

394087, Timiryazeva ul., 8, Voronezh

Web of Science ResearcherID AAS-7706-2020

Scopus AuthorID 26662362000



T. P. Novikova
Voronezh State University of Forestry and Technologies named after G.F. Morozov
Russian Federation

NOVIKOVA Tatyana P. – PhD (Technical), Associate Professor

394087. Timiryazeva str. 8. Voronezh

Web of Science ResearcherID N-1272-2016

Scopus AuthorID 57211295391



A. I. Novikov
Voronezh State University of Forestry and Technologies named after G.F. Morozov
Russian Federation

NOVIKOV Arthur I. – Advanced Doctor (Technical), Professor

394087. Timiryazeva str. 8, Voronezh

Web of Science ResearcherID N-1225-2016

Scopus AuthorID 57207453678



References

1. Gutman A.L., Uspenskij V.V. Bazisnyj vozrast i zakonomernosti rosta drevostoev. IVUZ. Lesnoj zhurnal, 1991, no. 2, pp. 6–10. (In Russ.)

2. Danilov D.A., Zhigunov A.V., Ryabinin B.N., Vajman A.A. Ocenka sostoyaniya lesnyh i postagrogennyh pochv Leningradskoj oblasti i perspektivy intensivnogo lesovyrashchivaniya na etih territoriyah. Izvestiya Sankt-Peterburgskoj lesotekhnicheskoj akademii, 2018, no. 223, pp. 47–63. DOI: 10.21266/2079-4304.2018.223.47-63. (In Russ.)

3. Kamalova N.S., Evsikova N.Yu., Lisicyn V.I., Saushkin V.V. Ocenka vliyaniya fluktuacij temperatury na pozharobezopasnost' lesnyh massivov. Aktual'nye napravleniya nauchnyh issledovanij XXI veka: teoriya i praktika, 2014, vol. 2, no. 3-4(8-4), pp. 69–72. DOI: https://doi.org/10.12737/4340. (In Russ.)

4. Kovaleva K.A., Yarmishko V.T. Rasprostranenie shirokolistvennyh drevesnyh porod v lesah severo-zapada Rossijskoj Federacii. Izvestiya Sankt-Peterburgskoj lesotekhnicheskoj akademii, 2017, iss. 219, pp. 32–46. DOI: 10.21266/2079-4304.2017.219.32-46. (In Russ.)

5. Lebedev A.V. Prognozirovanie rosta po srednej vysote kul'tur sosny s ispol'zovaniem obobshchennogo algebraicheskogo raznostnogo podhoda. Iz-vestiya Sankt-Peterburgskoj lesotekhnicheskoj akademii, 2022, no. 238, pp. 49–66. DOI: 10.21266/2079-4304.2022.238.49-66. (In Russ.)

6. Nagimov Z.Ya. Zakonomernosti rosta i formirovaniya nadzemnoj fitomassy sosnovyh drevostoev: diss. ... d-ra s.-h. nauk. Ekaterinburg: UGLTA, 2000. 409 p.

7. Osipenko A.E., Zalesov S.V. Raznovozrastnost' sosnovyh drevostoev kak faktor gar-monizacii sistemy lesohozyajstvennyh meropriyatij v lentochnyh borah Altajskogo kraya. Lesotekhnicheskij zhurnal, 2023, vol. 13, no. 1(49), pp. 129–145. DOI 10.34220/issn.2222-7962/2023.1/9. (In Russ.)

8. Petrishchev E.P. Issledovanie vzaimosvyazi biometricheskih paramet-rov yuvenil'nyh seyancev sosny obyknovennoj iz kondicionnyh semyan pri ocenke rezul'tatov lesovosstanovleniya. Lesotekhnicheskij zhurnal, 2021, vol. 11, no. 4(44), pp. 161–169. DOI: 10.34220/issn.2222-7962/2021.4/14. (In Russ.)

9. Petrovskij V. S., Guz' N.M., Malyshev V.V., Murzinov Yu. V. Issledovanie i optimizaciya vozrastnoj ploshchadi pitaniya derev'ev pri lesovyrashchivanii sosny. Lesotekhnicheskij zhurnal, 2013, no. 1(9), pp. 47–59. (In Russ.)

10. Rogozin M.V., Razin G.S. Modeli dinamiki i modelirovanie razvitiya drevostoev. Sibirskij lesnoj zhurnal, 2015, no. 2, pp. 55–70. DOI: 10.15372/SJFS20150205. (In Russ.) Svalov N.N. Modelirovanie proizvoditel'nostej drevostoev i teoriya lesopol'zovaniya. M.: Lesn. prom-st', 1979. 216 p. (In Russ.)

11. Sennov S.N. Tipy i bonitety. Izvestiya Sankt-Peterburgskoj leso-tekhnicheskoj akademii, 2005, iss. 173, pp. 4–10. (In Russ.)

12. Hlyustov V.K., Musievskij A.L. Lesotipologicheskie shkaly poroslevyh dubrav Voro-nezhskoj oblasti. Lesotekhnicheskij zhurnal, 2014, vol. 4, no. 3(15), pp. 117–130. DOI: 10.12737/6276. (In Russ.)

13. Shvidenko A.Z., Shchepashchenko D.G., Nil'son S., Buluj Yu.I. Tablicy i modeli hoda rosta i produktivnosti nasazhdenij osnovnyh lesoobrazuyushchih porod Severnoj Evrazii: (normativno-spravochnye materialy). Izd. 2-e. M.: Rosleskhoz, Mezhdunarodnyj institut prikladnogo sistemnogo analiza, 2008. 886 p. (In Russ.)

14. Bertalanffy L. Biophysik des Fließgleichgewichts. Vieweg, Braunschweig, 1956. Coker G.W.R. Leaf area index in closed canopies: an indicator of site quality. Master of Science thesis. University of Canterbury, School of Forestry, Canterbury, 2006, 114 p.

15. Innes J.C., Ducey M.J., Gove J.H., Leak W.B., Barrett J. Size density metrics, leaf area, and productivity in eastern white pine. Can. J. For. Res. 2005, 35 (10), pp. 2469–2478.

16. Jorgensen S.E., Svirezhev Y.V. Towards a thermodynamic theory for ecological systems. Elsevier: Oxford, 2004, 366 p.

17. Korzukhin M.D. Construction of forest stand growth curves on the basis of the generalized Bertalanffy model according to the state forest registry. For. Sci., 2019, Vol. 2, pp. 105–114.

18. Lisitsyn V.I., Drapalyuk M.V., Matveev N.N. Modeling the Forest Stand Growth Dynamics Based on the Thermodynamic Approach. Russian Forestry Journal, 2022, no. 3, pp. 213-225. DOI: https://doi.org/10.37482/0536-1036-2022-3-213-225 [in Russian].

19. Lisitsyn V.I., Matveev N.N., Saushkin V.V. Ecological and physiological modelling of mixed stand dynamics. IOP Conf. Ser.: Earth Environ. Sci., 2021. Vol. 875, 012042. DOI: https://doi.org/10.1088/1755-1315/875/1/012042.

20. Musiyevsky A. Modelling the growth tables of the oak stands of seed origin of the Voronezh region by type of forest growing conditions. IOP Conf. Ser.: Earth Environ. Sci., 2019, Vol. 316, 012041.

21. Novikov A.I., Lisitsyn V.I., Tigabu M. et al. Detection of Scots pine single seed in optoelectronic system of mobile grader: Mathematical modeling. Forests, 2021, vol. 12, no. 2, pp. 1–18. DOI: https://doi.org/10.3390/f12020240.

22. Novikov A.I., Drapalyuk M.V. et al. Performance of Scots pine seedlings from seeds graded by colour. Forests, 2019, vol. 10, no. 12. 1064. DOI: 10.3390/F10121064.

23. Novikova T.P. The choice of a set of operations for forest landscape restoration technology. Inventions, 2022, vol. 7, no. 1. DOI: https://doi.org/10.3390/inventions7010001.

24. Ogawa K., Adu-Bredu S., Yokota T., Hagihara A. Leaf biomass changes with stand development in hinoki cypress (Chamaecyparis obtusa [Sieb. et Zucc.] Endl.). Plant Ecol., 2010, 211(1), pp. 79–88.

25. Płotkowski L., Zając S., Wysocka-Fijorek E., Gruchała A., Piekutin J., Parzych S. Economic optimization of the rotation age of stands. Folia Forestalia Polonica, 2016, 58, pp. 188–197.

26. Pretzsch H., Biber P., Schütze G., Uhl E., Rotzer T. Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat. Commun., 2014, 5 (1), pp. 1–10.

27. Qu Y., Jiang Y, Chen H., Hu Y., Jiang Y., Wang Z., Chhin S., Zhang J., Sun L., Zhang X. Does the peak time of stand leaf area equal the biological maturity age of forests? Forest Ecology and Management, 2023, vol. 538, 120988. DOI: https://doi.org/10.1016/j.foreco.2023.120988.


Review

For citations:


Lisitsyn V.I., Novikova T.P., Novikov A.I. Modeling the biological maturity age of pine and oak forest stands. Izvestia Sankt-Peterburgskoj lesotehniceskoj akademii. 2023;(246):6-21. (In Russ.) https://doi.org/10.21266/2079-4304.2023.246.6-21

Views: 91


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-4304 (Print)
ISSN 2658-5871 (Online)