The fungus Rhizopus orizae F-1030 cultivating mode on neutral sulfite liquor hydrolysates affects the lactic acid synthesis efficiency
https://doi.org/10.21266/2079-4304.2024.250.405-422
Abstract
The industrial lactic acid production is based on microbiological fermentation of sugar-containing feedstock. Generally, the price on the substrate controls almost half the cost of the entire production. The use of pure individual sugars as a carbon source for the microbiological lactic acid synthesis leads to a significant rise in production expenses. Lignocellulosic biomass is one of the most common natural renewable sources of carbon, the use of which in biotechnological production as a carbohydrate-containing substrate is limited mostly due to the lack of cellulolytic enzymes in most strains of microorganisms used on industrial scale. The filamentous fungus Rhizopus orizae is an industrial lactic acid producing microorganism capable of metabolizing lignocellulose. The growth of microbial mass, substrate consumption rate and lactic acid yield are controlled by the metabolic activity of the producer cells, the latter depending on the cultivation mode. The microbiological lactic acid production regulation is carried out by changing such factors of nutrient medium as temperature, pH, nutrient concentration in the substrate and the final product concentration. The work involved the conditions’ selection for fungus R. oryzae F-1030 cultivation on neutral sulfite liquor, which made it possible to attain the optimal ratio of biomass and the synthesized lactic acid yield. It has been shown that the nutrient medium acidification is affected by the physiological maturity of the fungus. The level of reducing substances in the nutrient medium is controlled by the growth rate of the fungus R. oryzae F-1030 cells and the activity of its cellulolytic enzymes. There were no statistically significant differences in the amount of synthesized lactic acid and biomass growth depending on the mode of the fungus R. oryzae F-1030 cultivation on the neutral sulfite liquor after treatment with externally added enzymes. The growth of fungus R. oryzae F-1030 biomass is influenced by both the type of hydrolyzing agent (acid or enzyme) and the composition of the nutrient medium, in particular the presence of nitrogen, phosphorus, sulfur, and potassium salts. The batch cultivation mode was demonstrated as optimal for the fungus R. oryzae F-1030 to grow on the neutral sulfite liquor after acid hydrolysis.
About the Authors
L. A. MingazovaRussian Federation
Mingazova Leysan A. – PhD (Technical), Senior Lecturer of the Department of Food Engineering
420015. K. Marx str. 68. Kazan. Republic of Tatarstan
E. V. Kryakunova
Russian Federation
Kryakunova Elena V. – PhD (Biology), Associate Professor, Department of Food Engineering
420015. K. Marx str. 68. Kazan. Republic of Tatarstan
A. R. Galieva
Russian Federation
Galieva Aigul R. – Assistant of the Department of Food Engineering
420015. K. Marx str. 68. Kazan. Republic of Tatarstan
Z. А. Kanarskaya
Russian Federation
Kanarskaya Zosya A. – PhD (Technical), Associate Professor of the Department of Food Biotechnology
420015. K. Marx str. 68. Kazan. Republic of Tatarstan
A. V. Kanarskii
Russian Federation
Kanarskii Albert V. – DSc (Technical), Professor of the Department of Food Biotechnology
420015. K. Marx str. 68. Kazan. Republic of Tatarstan
I. V. Kruchina-Bogdanov
Russian Federation
Kruchina-Bogdanov Igor V. – PhD (Chemical), General manager
194021. Institutskiy per. 5B. St. Petersburg
E. V. Belkina
Russian Federation
Belkina Ekaterina V. – Process Engineer, Deputy Director for Quality
614037. Bumazhnikov str. 1. Perm
References
1. Abdel-Rahman M.A., Tashiro Y., Sonomoto K. Recent advances in lactic acid production by microbial fermentation processes. Biotechnology Advances, 2013, vol. 31, pp. 877–902. Doi.org/10.1016/j.biotechadv.2013.04.002.
2. Baruah J., Nath B.K., Sharma R., Kumar S., Deka R.C., Baruah D.C., Kalita E. Recent trends in the pretreatment of lignocellulosic biomass for value-added products. Frontiers in Energy Research, 2018, vol. 6, pp. 1–19. Doi.org/10.3389/fenrg.2018.00141.
3. Borshchevskaya L.N., Gordeeva T.L., Kalinina A.N., Sineoky S.P. Spektrofotometricheskoe opredelenie molochnoj kisloty. Zhurnal analiticheskoj himii, 2016, vol. 71, no. 8, pp. 787–790. DOI: 10.7868/S004445021608003X. (In Russ.)
4. Dumbrepatil A., Adsul M., Chaudhari S., Khire J., Gokhale D. Utilization of molasses sugar for lactic acid production by Lactobacillus delbrueckii subsp. delbrueckii mutant Uc-3 in batch fermentation. Applied and Environmental Microbiology, 2008, vol. 74, pp. 333–335. DOI: 10.1128/AEM.01595-07.
5. Fan Y., Zhou C., Zhu X. Selective catalysis of lactic acid to produce commodity chemicals. Catalysis Reviews: Science and Engineering, 2009, vol. 51, pp. 293–324. Doi.org/10.1080/01614940903048513.
6. Ha D.T., Kanarskaya Z.A., Kanarsky A.V., Shcherbakov A.V., Shcherbakova E.N. Vliyanie istochnika ugleroda na sintez biomassy i ekzopolisaharidov bakteriyami Paenibacillus mucilaginosus. IVUZ. Prikladnaya himiya i biotekhnologiya, 2019, vol. 9, no. 3, pp. 509–518. DOI: 10.21285/2227-2925-2019-9-3-509-518. (In Russ.)
7. Mingazova L.A., Kanarsky A.V., Kryakunova E.V., Kanarskaya Z.A. Sintez molochnoj kisloty gribom Rhizopus oryzae F-1030 na pitatel'nyh sredah iz sul'fitnyh shchelokov. IVUZ. Lesnoj zhurnal, 2020, no. 2, pp. 146–158. DOI: 10.37482/0536-1036-2020-2-146-158. (In Russ.)
8. Mingazova L.A., Kryakunova E.V., Kanarskaya Z.A., Kanarsky A.V. Primenenie sul'fitnyh shchelokov v kachestve pitatel'noj sredy dlya kul'tivirovaniya producenta molochnoj kisloty Rhizopus oryzae F-1030. IVUZ. Lesnoj zhurnal, 2021а, no. 5, pp. 163–173. DOI: 10.37482/0536-1036-2021-5-163-173. (In Russ.)
9. Mingazova L.A., Kryakunova Ye.V., Kanarskaya Z.A., Kanarskiy A.V., KruchinaBogdanov I.V., Belkina YE.V. Vliyanie gidroliticheskoj obrabotki na soderzhanie reduciruyushchih veshchestv v nejtral'no-sul'fitnyh shchelokah. Himiya rastitel'nogo syr'ya, 2021b, no. 3, pp. 309–316. DOI: 10.14258/jcprm.2021039160. (In Russ.)
10. Morozova Yu.A., Skvortsov E.V., Alimova F.K., Kanarsky A.V. Biosintez ksilanaz i cellyulaz gribami roda Trichoderma na poslespirtovoj barde. Vestnik tekhnologicheskogo universiteta, 2012, Vol. 15, no. 19, pp. 120–122. (In Russ.)
11. Rawoof S.A.A., Kumar P.S., Vo D.-V.N., Devaraj K., Man, Y., Devaraj T., Subramanian S. Production of optically pure lactic acid by microbial fermentation. Environmental Chemistry Letters, 2020, vol. 19, pp. 539–556. Doi.org/10.1007/s10311-020-01083-w.
12. Saito K., Hasa Y., Abe H. Production of lactic acid from xylose and wheat straw by Rhizopus oryzae. Journal of Bioscience and Bioengineering, 2012, vol. 114, pp. 166–169. Doi.org/10.1016/j.jbiosc.2012.03.007.
13. Tejayadi S., Cheryan M. Lactic acid from cheese whey permeate. Productivity and economics of a continuous membrane bioreactor. Applied Microbiology and Biotechnology, 1995, vol. 43, pp. 242–248.
Review
For citations:
Mingazova L.A., Kryakunova E.V., Galieva A.R., Kanarskaya Z.А., Kanarskii A.V., Kruchina-Bogdanov I.V., Belkina E.V. The fungus Rhizopus orizae F-1030 cultivating mode on neutral sulfite liquor hydrolysates affects the lactic acid synthesis efficiency. Izvestia Sankt-Peterburgskoj lesotehniceskoj akademii. 2024;(250):405-422. (In Russ.) https://doi.org/10.21266/2079-4304.2024.250.405-422