Preview

Izvestia Sankt-Peterburgskoj lesotehniceskoj akademii

Advanced search

Features of active mycogenic xylolysis on scots pine in the zone of coniferous-deciduous forests

https://doi.org/10.21266/2079-4304.2023.244.164-183

Abstract

Mycogenic xylolysis in Scots pine (Pinus sylvestris L.) in coniferous-deciduous forests of the Non-Chernozem zone is a complex biochemical process involving four groups of Aphyllophorales fungi (APF). The limiting conditions associated with the directed active growth of fungal mycelium inside the wood include illumination, access to moisture and air. With the development of mycogenic xylolysis, there is an increase in the biodiversity of AFG species, which reaches a maximum at stage III–IV. On a large data set of 119 model trees and 3512 basidiomes of xylotrophic basidiomycetes, it was shown that the fruit bodies of fungi are actively formed under abiotic stress and in subsequent seasons their number increases. The dominant position in the APF complex at stage II-III is occupied by the cellulose-destroying fungus Neoantrodia serialis [=Antrodia serialis], as well as the lignin-destroying fungi Stereum sanguinolentum and Trichaptum fuscoviolaceum. At stage III–IV of mycogenic xylolysis, the growth of Fomitopsis pinicola prevails, the strategy of developing wood of which is similar to N. serialis [=A. serialis]. In the process of biological decomposition of pine wood, different types of APF evolved according to different strategies for the development of the substrate, forming diseases of the type of white rot (annular corrosive) or brown rot (segmental corrosive). Our research has demonstrated the rapid development of the substrate of S. sanguinolentum, with a wide coverage of a large volume of the trunk not only along the perimeter, but also in the trunk core and further in the directions up and down inside the tree along the gradient of moisture and air. The strategy of Fomitopsis pinicola is different, and is related to the adaptation to the biochemistry of the substrate, which is why it is so widespread in many habitats and on different parts of the trunk of the scots pine.

About the Authors

S. E. Neklyaev
All-Russian Scientific Research Institute of Phytopathology
Russian Federation

NEKLYAEV Svyatoslav E. – Junior Researcher of the Department of Pathology of Ornamental and Garden Crops, master of Forestry

143050. Institute str. 5. Bolshye Vyazemy. Odintsovo district. Moscow region

Author ID: 394048



G. E. Larina
All-Russian Scientific Research Institute of Phytopathology
Russian Federation

LARINA Galina E. – DSc (Biological), Professor, Head of the Laboratory of Experimental Research Methods

143050. Institute str. 5. Bolshye Vyazemy. Odintsovo district. Moscow region

AuthorID: 157983

Web of Science ResearcherID: A-9131-2017

Scopus AuthorID 8697257900



L. G. Seraya
All-Russian Scientific Research Institute of Phytopathology
Russian Federation

SERAYA Lidia G. – PhD (Biological), Head of the Department of Pathology of Ornamental and Garden Crops

143050. Institute str. 5. Bolshye Vyazemy. Odintsovo district. Moscow region

AuthorID: 111076

Scopus AuthorID 57209460291



References

1. Verevkin A.N., Kononov G.N., Serdukova J.V. et al. Biodegradaciya drevesini fermentnimi kompleksami derevorazrushaushikh gribov. Lesnojvestnik, 2019, vol. 23, no. 5, pp. 95–100. (In Russ.)

2. Kazarcev I.A., Solov’ev V.A. Izmeneniya khimicheskogo sostava drevesini pod dejstviem ligninorazrushaushego griba Phanerochaete sanguinea. IzvestiaSankt-Peterburgskoj Lesotehniceskoj Akademii, 2009, iss. 188, pp. 253–259. (In Russ.)

3. Kapitsa E.A., Trubicina E.A., Shorohova E.V. Biogennij ksiloliz stvolov, vetvej I kornej lesoobrazuushikh porod temnokhvojnikh severotajegnikh lesov. Lesovedenie, 2012, no. 3, pp. 51–58. (In Russ.)

4. Krasutskij B.V. Kratkij atlas nekotorikh ksylophilnikh gribov Chelyabiskoj oblasti. Chelyabisk: Izd-vo ChelGU, 2021. 192 p. (In Russ.)

5. Neklyaev S.E., Seraya L.G., Larina G.E. Ecologicheskie posledstviya sovremennikh izmenenij klimata, negativno vliyaushie na ustojchivost’ khvojnikh rastenij k vreditelyam I afillophorovim gribam. Biosphera, 2022, vol. 14, no. 3, pp. 235–244. DOI: 10.24855/biosfera. v14i3. 693. (In Russ.)

6. Niemelya T. Trutovie gribi Finlyandii i prilegaushikh territorij Rossii/T. Niemelya. Norrlinia 8. Helsinki: Helsinki University Printing House, 2001. 120 p. (In Russ.)

7. Storogenko V.G., Krutov V.I., Ruokolajnen A.V., Kotkova V.M., Bondarceva M.A. Atlas-opredelitel derevorazrushaushikh gribov Russkoj ravnini. М.: КМК, 2014. 198 p. (In Russ.)

8. Dai Z., Trettin C.C., Burton A.J., Jurgensen M.F., Page-Dumroese D.S., Forschler B.T., Schilling5J.S., Lindner D.L. Coarse woody debris decomposition assessment tool: Model development and sensitivity analysis. PLoS ONE,2021. vol. 16(6): e0251893. URL: https://doi.org/10.1371/journal.pone.0251893

9. Hatakka A., Hammel K.E., Hofrichter M. et al. Fungal biodegradation of lignocelluloses. Industrial Applications (The Mycota), 2011, vol. 10, pp. 319–340.

10. Hiscox J., O'Leary J., Boddy L. Fungus wars: basidiomycete battles in wood decay. Studies In Mycology, 2018, vol. 89, pp. 117–124. URL: https://doi.org/10.1016/j.simyco.2018.02.003

11. Mali T., Kuuskeri J., Shah F., Lundell T.K. Interactions affect hyphal growth and enzyme profiles in combinations of coniferous wood-decaying fungi of Agaricomycetes. PLoS ONE, 2017, vol. 12(9): e0185171. URL: https://doi.org/10.1371/journal.pone.0185171

12. Shorohova E., Kapitsa E., Vanha-Majamaa I. Decomposition of stumps 10 years after partial and complete harvesting in southern boreal forest in Finland. Canadian Journal of Forest Research, 2008, vol. 81(9), pp. 2414–2421.

13. Stokland J.N., Siitonen J., Jonsson B.G. Biodiversity in dead wood. Cambridge: Cambridge University Press, 2012. 509 p. doi.org/10.1017/CBO9781139025843

14. Tarasov M.E. Metodicheskie podkhodi k opredeleniu skorosti rezlozheniya drevesnogo detrita. Lesovedenie, 2002, no. 5, pp. 32–38. (In Russ.)

15. Villavicencio E.V., Mali T., Mattila H.K., Lundell T. Enzyme Activity Profiles Produced on Wood and Straw by Four Fungi of Deferent Decay Strategies. MDPI Microorganisms, 2020, vol. 8(73). URL: https://www.mdpi.com/2076-2607/8/1/73. DOI: 10.3390/microorganisms8010073

16. Zabel R.A., Morrell J.J., Robinson S. Wood Microbiology. Decay and Its Prevention. London: ELSEVIER Academicals Press, 2020. 556 p.


Review

For citations:


Neklyaev S.E., Larina G.E., Seraya L.G. Features of active mycogenic xylolysis on scots pine in the zone of coniferous-deciduous forests. Izvestia Sankt-Peterburgskoj lesotehniceskoj akademii. 2023;(244):164-183. (In Russ.) https://doi.org/10.21266/2079-4304.2023.244.164-183

Views: 114


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2079-4304 (Print)
ISSN 2658-5871 (Online)